In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),dee...In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.展开更多
Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications d...Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications due to their chemical diversity.Converting 2D TMDs into one-dimensional(1D)TMDs nanotubes can not only retain some advantages of 2D nanosheets but also providing a unique direction to explore the novel properties of TMDs materials in the 1D limit.However,the controllable preparation of high-quality nanotubes remains a major challenge.It is very necessary to review the advanced development of one-dimensional transition metal dichalcogenide nanotubes from preparation to application.Here,we first summarize a series of bottom-up synthesis methods of 1D TMDs,such as template growth and metal catalyzed method.Then,top-down synthesis methods are summarized,which included selfcuring and stacking of TMDs nanosheets.In addition,we discuss some key applications that utilize the properties of 1D-TMDs nanotubes in the areas of catalyst preparation,energy storage,and electronic devices.Last but not least,we prospect the preparation methods of high-quality 1D-TMDs nanotubes,which will lay a foundation for the synthesis of high-performance optoelectronic devices,catalysts,and energy storage components.展开更多
Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabricati...Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.展开更多
The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorph...The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.展开更多
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
【目的】英文科技期刊作为科研成果传播和国际学术交流的重要平台,在我国科技发展中发挥了举足轻重的作用,本文研究旨在为进一步促进我国英文科技期刊国际化发展提供借鉴与实践指导。【方法】本文基于Journal of Marine Science and App...【目的】英文科技期刊作为科研成果传播和国际学术交流的重要平台,在我国科技发展中发挥了举足轻重的作用,本文研究旨在为进一步促进我国英文科技期刊国际化发展提供借鉴与实践指导。【方法】本文基于Journal of Marine Science and Application的办刊实践,从如何充分发挥专家办刊优势、多措并举加大宣传力度以及创新出版模式等方面总结和探讨我国英文科技期刊国际影响力提升策略。【结果】国际化办刊对提升我国英文科技期刊国际影响力和知名度具有显著效果。【结论】国际化发展是英文科技期刊的必然途径,对加快推进我国科技期刊建设成为世界一流期刊具有重要意义。展开更多
目的:英文科技期刊作为科研成果传播和学术交流的重要载体,对提升我国科技国际竞争力和影响力作出了巨大贡献,文章旨在为进一步促进我国高校英文科技期刊高质量发展提供借鉴与实践指导。方法:基于Journal of Marine Science and Applica...目的:英文科技期刊作为科研成果传播和学术交流的重要载体,对提升我国科技国际竞争力和影响力作出了巨大贡献,文章旨在为进一步促进我国高校英文科技期刊高质量发展提供借鉴与实践指导。方法:基于Journal of Marine Science and Application办刊实践,从打造期刊专家队伍、深耕稿件学术质量、多措并举加大宣传等方面总结和探讨我国高校英文科技期刊学术质量和影响力提升策略。结果:组建高水平专家办刊团队、坚守内容质量生命线以及拓宽期刊国际化发展对全面提升我国高校英文科技期刊综合办刊能力和知名度效果显著。结论:期刊学术质量和影响力提升是我国高校英文科技期刊发展的核心,对加快推进我国科技期刊建设成为世界一流期刊具有重要意义。展开更多
以Journal of Marine Science and Application为例,从聚焦国家重大战略需求、服务一流学科建设、服务广大作者与读者、助力人才培养、服务高校广大师生等方面探讨在“双一流”建设和培育世界一流科技期刊背景下,我国高校英文科技期刊...以Journal of Marine Science and Application为例,从聚焦国家重大战略需求、服务一流学科建设、服务广大作者与读者、助力人才培养、服务高校广大师生等方面探讨在“双一流”建设和培育世界一流科技期刊背景下,我国高校英文科技期刊服务能力建设举措及办刊实践。文章认为,高校英文科技期刊应坚持服务国家战略与学科发展并重,通过国际化、专业化、特色化办刊实践,全面提升服务能力,为我国科技强国建设提供有力支撑。展开更多
Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature ...Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles.In this respect,tetra-cationic ionic liquids 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino)phenyl)-1,3-bis(3-hexcyldimethylammnonio)propyl)bromide-1 H-imidazol-3-ium acetate were prepared.Their chemical structures,thermal as well as their carbon dioxide absorption/desorption characteristicswere evaluated.Theywere used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice,sizes,thermal properties and spherical surface morphologies.The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology.The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.展开更多
Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials...Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials offer a promising alternative strategy for solving water disinfection challenges.This technology effectively destroys bacterial biofilms by designing materials with controlled photothermal properties.Despite the potential of this technology,there is a lack of comprehensive reviews on the application of photothermal materials in water disinfection.The aim of this paper is to provide a comprehensive and up-to-date overview of the research and application of photothermal materials in water disinfection.It focuses on composites in photothermal materials,elucidates their basic mechanisms and sterilization properties,and provides a systematic and detailed overview of their recent progress in the field.The goal of this review is to offer insights into the future design of photothermal materials and to propose strategies for their practical application in disinfection processes.展开更多
Deforestation is the purpose of converting forest into land and reforestation compared to deforestation is very low.That’s why closely and accurately deforestation monitoring using Sentinel-1 and Sentinel-2 satellite...Deforestation is the purpose of converting forest into land and reforestation compared to deforestation is very low.That’s why closely and accurately deforestation monitoring using Sentinel-1 and Sentinel-2 satellite images for better vision is required.This paper proposes an effective image fusion technique that combines S-1/2 data to improve the deforested areas.Based on review,Optical and SAR image fusion produces high-resolution images for better de-forestation monitoring.To enhance the S-1/2 images,preprocessing is needed as per requirements and then,collocation between the two different types of images to mitigate the image registration problem,and after that,apply an image fu-sion machine learning approach,PCA-Wavelet.As per analysis,PCA helps to maintain spatial resolution,and Wavelet helps to preserve spectral resolution,gives better-fused images compared to other techniques.As per results,2019 S-2 pre-22 processed collocated image enhances 42.2508 km deforested area,S-1 preprocessed collocated image enhances 23.7918 km^(2) deforested area,and after fusion of the 2019 S-1/2 images,it enhances 16.5335 km deforested area.Similarly,the 20232 S-2 preprocessed collocated image enhances 49.2216 km deforested area,S-1 preprocessed collocated image enhances 2223.8459 km deforested area after fusion of the 2023 S-1/2 images,enhancing 35.9185 km deforested area.These im-provements show that combining data sources gives a clearer and more reliable picture of forest loss over time.The overall paper objective is to apply effective techniques for image fusion of Brazil’s Amazon Forest and analyze the difference between collocated image pixels and fused image pixels for accurate analysis of deforested area.展开更多
Methylglyoxal (MGO) is a vital signaling molecule that related to a variety of pathologies in both animals and plants. However, high levels of MGO are associated with several diseases. Therefore, developing a sensitiv...Methylglyoxal (MGO) is a vital signaling molecule that related to a variety of pathologies in both animals and plants. However, high levels of MGO are associated with several diseases. Therefore, developing a sensitive method for monitoring MGO levels in vivo and investigating its molecular mechanism is of great importance. Although most of the reported MGO fluorescence probes are designed for cells and animals, none have been used for study MGO levels in plants. Consequently, we herein report a fluorescent probe named CPDN, which is rational constructed utilizing coumarin derivatives and O-phenylenediamine as the fluorophore and the recognition group, respectively. In our study, CPDN have shown ability to selectively and sensitively detect MGO in solution and has been successfully exploited for imaging endogenous and exogenous MGO levels in living cells, zebrafish and Arabidopsis thaliana. Surprisingly, further investigation of CPDN has found that high MGO levels in Arabidopsis thaliana could inhibit the root growth. Moreover, it is demonstrated that the MGO levels in Arabidopsis thaliana increased when subjected to drought stress, which may be the main cause inhibiting root development and resulting in shorter root length. Therefore, the probe CPDN can be a powerful tool for studying the MGO levels under abiotic stress conditions and exploring its role in plant growth mechanisms. We believe that the application of CPDN in monitoring MGO levels in plants holds great values for deepening the understanding of plant growth mechanisms.展开更多
To further improve upon the deficiencies of traditional algorithms in terms of population diversity,convergence accuracy,and speed,this paper introduces a Dynamic Multi-Population Hybrid Metaheuristic Algorithm(DHA).D...To further improve upon the deficiencies of traditional algorithms in terms of population diversity,convergence accuracy,and speed,this paper introduces a Dynamic Multi-Population Hybrid Metaheuristic Algorithm(DHA).DHA dynamically categorizes the population into Elite,Follower,and Explorer subgroups,applying specific strategies:a novel dimension-wise Gaussian mutation combined with the Sine Cosine Algorithm(SCA)for the Elite,a randomized spiral search for the Explorer,and Lévy flight for the Follower.Rigorous testing on benchmark sets like CEC2005,CEC2017,and CEC2019,alongside practical application in Service Function Chain(SFC)mapping,underscores DHA’s superior performance and applicability.展开更多
VlseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)has been developed and applied for over twenty-five years,gaining recognition as a prominent multi-criteria decision-making(MCDM)method.Over this period,numer...VlseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)has been developed and applied for over twenty-five years,gaining recognition as a prominent multi-criteria decision-making(MCDM)method.Over this period,numerous studies have explored its applications,conducted comparative analyses,integrated it with other methods,and proposed various modifications to enhance its performance.This paper aims to delve into the fundamental principles and objectives of VIKOR,which aim to maximize group utility and minimize individual regret simultaneously.However,this study identifies a significant limitation in the VIKOR methodology:its process amplifies the weight of individual regret,and the calculated index values further magnify this effect.This phenomenon not only affects the decision-making balance but also leads to the critical issue of ranking reversal,which undermines the reliability of the results.To address these shortcomings,this paper introduces an enhanced version of VIKOR that mitigates the impact of individual regret while preserving the method’s original objectives.This paper validates the effectiveness of the proposed enhanced VIKOR method using various MCDM approaches,including(1)ten different versions of VIKOR and(2)eleven commonly used MCDM methods.Furthermore,this study confirms that the enhanced VIKOR can be effectively applied across various existing VIKOR versions,broadening its adaptability.A sensitivity analysis is additionally performed by adjusting the criteria weights using the ordered weighted averaging method.An illustrative case study involving the selection of a manufacturing process validates the proposed model.The results show that the proposed model is robust and capable of producing more reliable outcomes.It also demonstrates its practicality and effectiveness in real-world decision-making scenarios.展开更多
In the present study,a body-centered-cubic(BCC)structured Nb/TiNb multilayer nanocomposite with high yield strength,which comprises a soft TiNb matrix and reinforced Nb nanowires,was designed and fabricated with the a...In the present study,a body-centered-cubic(BCC)structured Nb/TiNb multilayer nanocomposite with high yield strength,which comprises a soft TiNb matrix and reinforced Nb nanowires,was designed and fabricated with the aim of elucidating the strengthening mechanism of Nb/TiNb multilayer nanocomposite by scanning electron microscope,transmission electron microscopy and in situ synchrotron X-ray diffraction.It is observed that the Nb/TiNb nanocomposite possesses a high yield strength of~640 MPa,significantly exceeding that of the conventional single-phaseβ-type Ti alloys.Further experimental results indicate that as plastic deformation commenced in the TiNb matrix of Nb/TiNb nanocomposite,load transfer from the soft TiNb matrix into the reinforced Nb nanowires occurred,allowing for a high load-bearing stress contribution and a significant strength enhancement of Nb/TiNb nanocomposite.Meanwhile,the embedded Nb nanowires can effectively impede the propagation of dislocation in TiNb matrix,further strengthening the present nanocomposite.These findings elucidate the strengthening mechanism of Nb/TiNb nanocomposite through the above two combinations,providing a basis for the design and development of the high-strength composites with a single-phase BCC structure for biomedical applications.展开更多
Pollutants contained in wastewater pose serious harm to the environment.Graphene-based water treatment materials show significant advantages in wastewater treatment.However,with the development of graphene-based mater...Pollutants contained in wastewater pose serious harm to the environment.Graphene-based water treatment materials show significant advantages in wastewater treatment.However,with the development of graphene-based materials,its progress in water treatment has reached a bottleneck.The challenge lies in effectively enhancing its performance in water treatment and ensuring its practicality.By employing biomimetic approaches,some exceptional properties and structures found in nature can be mimicked in graphene materials,effectively enhancing graphene's adsorption and mechanical properties.Current biomimetic methods include biomimetic mineralization,self-assembly,and templating.unfortunately,all of the above methods suffer from the disadvantages of complexity and poor bionic effect.Nevertheless,3D printing,a form of additive manufacturing(AM)technology,offers integrated molding and excellent biomimetic performance in creating biomimetic materials.This paper will cover the following aspects:(1)An overview of objects suitable for bionics in terms of functional and structural aspects,along with their properties,and a discussion of various bionic objects combined with graphene materials in water treatment and related research;(2)a comparison of different methods for preparing graphene-based bionic materials;(3)an examination of the current drawbacks and limitations of graphene-based biomimetic materials;and(4)a conclusion and future prospects,exploring the potential of using 3D printing technology to produce graphene biomimetic materials.This review aims to serve as a guide for effectively leveraging natural inspirations to create graphene-based biomimetic materials and enhance graphene properties.展开更多
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a...To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.展开更多
Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the ...Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the evolution of ALD interlayers across various photovoltaic technologies,starting with early silicon solar cells and progressing into a variety of thin-film solar cells.We then delve into the role of ALD in state-of-the-art single-junction perovskite solar cells,particularly in optimizing the critical interfaces of perovskites/charge-transporting layers/-electrodes.Apart from that,we screen the functionality of ALD processing,which consists of reducing surface/interfacial defects and thus mitigating energy loss.Particularly,it enables efficient stacking of multiple thin layers,making a variety of tandem solar cells possible(silicon/perovskite,etc.)for higher efficiency.Moreover,the ALDprocessed interlayer prevents the ion migration between metals and perovskites,inhibiting the inter-diffusioninduced degradation of devices.Despite ALD technology extensively elevating the performance of above conventional/emerging solar cells,key challenges such as precursor flammability,cross-contamination during processing,and low deposition pace persist.We go over these challenges and expect our comprehensive overview of ALD techniques could shed light on pushing the envelope of photovoltaic efficiency.展开更多
As modern power systems grow in complexity,accurate and efficient fault detection has become increasingly important.While many existing reviews focus on a single modality,this paper presents a comprehensive survey fro...As modern power systems grow in complexity,accurate and efficient fault detection has become increasingly important.While many existing reviews focus on a single modality,this paper presents a comprehensive survey from a dual-modality perspective-infrared imaging and voiceprint analysis-two complementary,non-contact techniques that capture different fault characteristics.Infrared imaging excels at detecting thermal anomalies,while voiceprint signals provide insight into mechanical vibrations and internal discharge phenomena.We review both traditional signal processing and deep learning-based approaches for each modality,categorized by key processing stages such as feature extraction and classification.The paper highlights how these modalities address distinct fault types and how they may be fused to improve robustness and accuracy.Representative datasets are summarized,and practical challenges such as noise interference,limited fault samples,and deployment constraints are discussed.By offering a cross-modal,comparative analysis,this work aims to bridge fragmented research and guide future development in intelligent fault detection systems.The review concludes with research trends including multimodal fusion,lightweight models,and self-supervised learning.展开更多
Improving the accuracy of the evaluation of the performance of wind farms in large wind power bases located in complex terrain under the actual atmosphere is crucial to the sustainable development of wind power.To thi...Improving the accuracy of the evaluation of the performance of wind farms in large wind power bases located in complex terrain under the actual atmosphere is crucial to the sustainable development of wind power.To this end,this study combined the Weather Research and Forecasting(WRF)model with the Wind Farm Parameterization(WFP)method to investigate the wake characteristics and operational performance of large onshore wind farms in the complex terrain of Jiuquan City,Gansu Province,China.The research results showed that after verification,the systematic error of the WRF simulations was less than 3%.The WRF model and the WFP scheme simulated a significant warming phenomenon within the wind power base area,while a cooling effect was observed outside.The analysis of the wake effects indicated that the impact of PhaseⅠconstruction on PhaseⅡconstruction of the wind power base was minimal.During the operation of the entire wind power base,the wind speed within the wind farm decreased by approximately 10%,and the influence range of the predominant wind direction extended over a hundred kilometers downwind.The research conclusions provide a powerful scientific basis for optimizing design and operation,improving efficiency,minimizing the negative impacts on adjacent wind turbines,and ensuring the sustainable development of wind energy through dynamic planning and scientific assessment.展开更多
文摘In the context of the rapid iteration of information technology,the Internet of Things(IoT)has established itself as a pivotal hub connecting the digital world and the physical world.Wireless Sensor Networks(WSNs),deeply embedded in the perception layer architecture of the IoT,play a crucial role as“tactile nerve endings.”A vast number of micro sensor nodes are widely distributed in monitoring areas according to preset deployment strategies,continuously and accurately perceiving and collecting real-time data on environmental parameters such as temperature,humidity,light intensity,air pressure,and pollutant concentration.These data are transmitted to the IoT cloud platform through stable and reliable communication links,forming a massive and detailed basic data resource pool.By using cutting-edge big data processing algorithms,machine learning models,and artificial intelligence analysis tools,in-depth mining and intelligent analysis of these multi-source heterogeneous data are conducted to generate high-value-added decision-making bases.This precisely empowers multiple fields,including agriculture,medical and health care,smart home,environmental science,and industrial manufacturing,driving intelligent transformation and catalyzing society to move towards a new stage of high-quality development.This paper comprehensively analyzes the technical cores of the IoT and WSNs,systematically sorts out the advanced key technologies of WSNs and the evolution of their strategic significance in the IoT system,deeply explores the innovative application scenarios and practical effects of the two in specific vertical fields,and looks forward to the technological evolution trends.It provides a detailed and highly practical guiding reference for researchers,technical engineers,and industrial decision-makers.
基金supported by the National Natural Science Foundation of China(No.22202065).
文摘Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications due to their chemical diversity.Converting 2D TMDs into one-dimensional(1D)TMDs nanotubes can not only retain some advantages of 2D nanosheets but also providing a unique direction to explore the novel properties of TMDs materials in the 1D limit.However,the controllable preparation of high-quality nanotubes remains a major challenge.It is very necessary to review the advanced development of one-dimensional transition metal dichalcogenide nanotubes from preparation to application.Here,we first summarize a series of bottom-up synthesis methods of 1D TMDs,such as template growth and metal catalyzed method.Then,top-down synthesis methods are summarized,which included selfcuring and stacking of TMDs nanosheets.In addition,we discuss some key applications that utilize the properties of 1D-TMDs nanotubes in the areas of catalyst preparation,energy storage,and electronic devices.Last but not least,we prospect the preparation methods of high-quality 1D-TMDs nanotubes,which will lay a foundation for the synthesis of high-performance optoelectronic devices,catalysts,and energy storage components.
基金supported by the National Key R&D Plan of China(Grant No.2023YFB3210400)the National Natural Science Foundation of China(No.62174101)+2 种基金the Major Scientific and Technological Innovation Project of Shandong Province(2021CXGC010603)the Fundamental Research Funds of Shandong University(2020QNQT001)Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong,the Natural Science Foundation of Qingdao-Original exploration project(No.24-4-4-zrjj-139-jch).
文摘Flexible electronics are transforming our lives by making daily activities more convenient.Central to this innovation are field-effect transistors(FETs),valued for their efficient signal processing,nanoscale fabrication,low-power consumption,fast response times,and versatility.Graphene,known for its exceptional mechanical properties,high electron mobility,and biocompatibility,is an ideal material for FET channels and sensors.The combination of graphene and FETs has given rise to flexible graphene field-effect transistors(FGFETs),driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors.Here,we first provide a brief overview of the basic structure,operating mechanism,and evaluation parameters of FGFETs,and delve into their material selection and patterning techniques.The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities.We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors,focusing on the key aspects of constructing high-quality flexible biomedical sensors.Finally,we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors.This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
基金supported by National Natural Science Foundation of China(62174164,U23A20568,and U22A2075)National Key Research and Development Project(2021YFA1202600)+2 种基金Talent Plan of Shanghai Branch,Chinese Academy of Sciences(CASSHB-QNPD-2023-022)Ningbo Technology Project(2022A-007-C)Ningbo Key Research and Development Project(2023Z021).
文摘The traditional von Neumann architecture faces inherent limitations due to the separation of memory and computa-tion,leading to high energy consumption,significant latency,and reduced operational efficiency.Neuromorphic computing,inspired by the architecture of the human brain,offers a promising alternative by integrating memory and computational func-tions,enabling parallel,high-speed,and energy-efficient information processing.Among various neuromorphic technologies,ion-modulated optoelectronic devices have garnered attention due to their excellent ionic tunability and the availability of multi-dimensional control strategies.This review provides a comprehensive overview of recent progress in ion-modulation optoelec-tronic neuromorphic devices.It elucidates the key mechanisms underlying ionic modulation of light fields,including ion migra-tion dynamics and capture and release of charge through ions.Furthermore,the synthesis of active materials and the proper-ties of these devices are analyzed in detail.The review also highlights the application of ion-modulation optoelectronic devices in artificial vision systems,neuromorphic computing,and other bionic fields.Finally,the existing challenges and future direc-tions for the development of optoelectronic neuromorphic devices are discussed,providing critical insights for advancing this promising field.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
文摘【目的】英文科技期刊作为科研成果传播和国际学术交流的重要平台,在我国科技发展中发挥了举足轻重的作用,本文研究旨在为进一步促进我国英文科技期刊国际化发展提供借鉴与实践指导。【方法】本文基于Journal of Marine Science and Application的办刊实践,从如何充分发挥专家办刊优势、多措并举加大宣传力度以及创新出版模式等方面总结和探讨我国英文科技期刊国际影响力提升策略。【结果】国际化办刊对提升我国英文科技期刊国际影响力和知名度具有显著效果。【结论】国际化发展是英文科技期刊的必然途径,对加快推进我国科技期刊建设成为世界一流期刊具有重要意义。
文摘目的:英文科技期刊作为科研成果传播和学术交流的重要载体,对提升我国科技国际竞争力和影响力作出了巨大贡献,文章旨在为进一步促进我国高校英文科技期刊高质量发展提供借鉴与实践指导。方法:基于Journal of Marine Science and Application办刊实践,从打造期刊专家队伍、深耕稿件学术质量、多措并举加大宣传等方面总结和探讨我国高校英文科技期刊学术质量和影响力提升策略。结果:组建高水平专家办刊团队、坚守内容质量生命线以及拓宽期刊国际化发展对全面提升我国高校英文科技期刊综合办刊能力和知名度效果显著。结论:期刊学术质量和影响力提升是我国高校英文科技期刊发展的核心,对加快推进我国科技期刊建设成为世界一流期刊具有重要意义。
文摘以Journal of Marine Science and Application为例,从聚焦国家重大战略需求、服务一流学科建设、服务广大作者与读者、助力人才培养、服务高校广大师生等方面探讨在“双一流”建设和培育世界一流科技期刊背景下,我国高校英文科技期刊服务能力建设举措及办刊实践。文章认为,高校英文科技期刊应坚持服务国家战略与学科发展并重,通过国际化、专业化、特色化办刊实践,全面提升服务能力,为我国科技强国建设提供有力支撑。
基金supported by Science,Technology&Innovation Funding Authority(STDF)under grant(No.47062).
文摘Conversion and capture of carbon pollutants based on carbon dioxide to valuable green oil-field chemicals are target all over the world for controlling the global warming.The present article used new room temperature amphiphilic imidazolium ionic liquids with superior surface activity in the aqueous solutions to convert carbon dioxide gas to superior amphiphilic calcium carbonate nanoparticles.In this respect,tetra-cationic ionic liquids 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate and 2-(4-hexyldimethylamino)phenyl)-1,3-bis(3-hexcyldimethylammnonio)propyl)bromide-1 H-imidazol-3-ium acetate were prepared.Their chemical structures,thermal as well as their carbon dioxide absorption/desorption characteristicswere evaluated.Theywere used as solvent and capping agent to synthesize calcium carbonate nanoparticles with controlled crystalline lattice,sizes,thermal properties and spherical surface morphologies.The prepared calcium carbonate nanoparticles were used as additives for the commercial water based drilling mud to improve their filter lose and rheology.The data confirm that the lower concentrations of 2-(4-dodecyldimethylamino)phenyl)-1,3-bis(3-dodecyldimethylammnonio)propyl)bromide-1-H-imidazol-3-ium acetate achieved lower seawater filter lose and improved viscosities.
基金financial support from National Natural Science Foundation of China(No.21908085)Natural Science Foundation of Jiangsu Province(No.BK20241950)+3 种基金China Postdoctoral Science Foundation(No.2023M731422)Open Project of State Key Laboratory of Materials Chemical Engineering(No.KL-NICE-23B03)Hubei Key Laboratory of Processing and Application of Catalytic Materials(No.202441204)the Science and Technology Plan School-Enterprise Cooperation IndustryUniversity-Research Forward-looking Project of Zhangjiagang(No.ZKYY2341)。
文摘Untreated water environments encourage the emergence of pathogenic microorganisms,which pose a significant risk to human health and sustainable development.Antimicrobial technologies in advanced photothermal materials offer a promising alternative strategy for solving water disinfection challenges.This technology effectively destroys bacterial biofilms by designing materials with controlled photothermal properties.Despite the potential of this technology,there is a lack of comprehensive reviews on the application of photothermal materials in water disinfection.The aim of this paper is to provide a comprehensive and up-to-date overview of the research and application of photothermal materials in water disinfection.It focuses on composites in photothermal materials,elucidates their basic mechanisms and sterilization properties,and provides a systematic and detailed overview of their recent progress in the field.The goal of this review is to offer insights into the future design of photothermal materials and to propose strategies for their practical application in disinfection processes.
文摘Deforestation is the purpose of converting forest into land and reforestation compared to deforestation is very low.That’s why closely and accurately deforestation monitoring using Sentinel-1 and Sentinel-2 satellite images for better vision is required.This paper proposes an effective image fusion technique that combines S-1/2 data to improve the deforested areas.Based on review,Optical and SAR image fusion produces high-resolution images for better de-forestation monitoring.To enhance the S-1/2 images,preprocessing is needed as per requirements and then,collocation between the two different types of images to mitigate the image registration problem,and after that,apply an image fu-sion machine learning approach,PCA-Wavelet.As per analysis,PCA helps to maintain spatial resolution,and Wavelet helps to preserve spectral resolution,gives better-fused images compared to other techniques.As per results,2019 S-2 pre-22 processed collocated image enhances 42.2508 km deforested area,S-1 preprocessed collocated image enhances 23.7918 km^(2) deforested area,and after fusion of the 2019 S-1/2 images,it enhances 16.5335 km deforested area.Similarly,the 20232 S-2 preprocessed collocated image enhances 49.2216 km deforested area,S-1 preprocessed collocated image enhances 2223.8459 km deforested area after fusion of the 2023 S-1/2 images,enhancing 35.9185 km deforested area.These im-provements show that combining data sources gives a clearer and more reliable picture of forest loss over time.The overall paper objective is to apply effective techniques for image fusion of Brazil’s Amazon Forest and analyze the difference between collocated image pixels and fused image pixels for accurate analysis of deforested area.
基金support from the National Natural Science Foundation of China(No:21804102)the Open Project of Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry(No:BEEA0001)+1 种基金the Opening Project of Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients(No:HLPAI2023011)the Graduate Innovative Fund of Wuhan Institute of Technology(No:CX2022429).
文摘Methylglyoxal (MGO) is a vital signaling molecule that related to a variety of pathologies in both animals and plants. However, high levels of MGO are associated with several diseases. Therefore, developing a sensitive method for monitoring MGO levels in vivo and investigating its molecular mechanism is of great importance. Although most of the reported MGO fluorescence probes are designed for cells and animals, none have been used for study MGO levels in plants. Consequently, we herein report a fluorescent probe named CPDN, which is rational constructed utilizing coumarin derivatives and O-phenylenediamine as the fluorophore and the recognition group, respectively. In our study, CPDN have shown ability to selectively and sensitively detect MGO in solution and has been successfully exploited for imaging endogenous and exogenous MGO levels in living cells, zebrafish and Arabidopsis thaliana. Surprisingly, further investigation of CPDN has found that high MGO levels in Arabidopsis thaliana could inhibit the root growth. Moreover, it is demonstrated that the MGO levels in Arabidopsis thaliana increased when subjected to drought stress, which may be the main cause inhibiting root development and resulting in shorter root length. Therefore, the probe CPDN can be a powerful tool for studying the MGO levels under abiotic stress conditions and exploring its role in plant growth mechanisms. We believe that the application of CPDN in monitoring MGO levels in plants holds great values for deepening the understanding of plant growth mechanisms.
基金supported by the Natural Science Foundation of Zhejiang Province(LZ20F010008)the National College Students Innovation and Entrepreneurship Training Program(202310351075)the Zhejiang Xinmiao Talents Program(2023R451023).
文摘To further improve upon the deficiencies of traditional algorithms in terms of population diversity,convergence accuracy,and speed,this paper introduces a Dynamic Multi-Population Hybrid Metaheuristic Algorithm(DHA).DHA dynamically categorizes the population into Elite,Follower,and Explorer subgroups,applying specific strategies:a novel dimension-wise Gaussian mutation combined with the Sine Cosine Algorithm(SCA)for the Elite,a randomized spiral search for the Explorer,and Lévy flight for the Follower.Rigorous testing on benchmark sets like CEC2005,CEC2017,and CEC2019,alongside practical application in Service Function Chain(SFC)mapping,underscores DHA’s superior performance and applicability.
基金supported by the National Science and Technology Council(NSTC)Taiwan(Grant No.NSTC 113-2222-E-029-005),with additional computational resources provided by the projectThe work of Josef Jablonsky was supprted by the Faculty of Informatics and Statistics,Prague University of Economics and Business。
文摘VlseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)has been developed and applied for over twenty-five years,gaining recognition as a prominent multi-criteria decision-making(MCDM)method.Over this period,numerous studies have explored its applications,conducted comparative analyses,integrated it with other methods,and proposed various modifications to enhance its performance.This paper aims to delve into the fundamental principles and objectives of VIKOR,which aim to maximize group utility and minimize individual regret simultaneously.However,this study identifies a significant limitation in the VIKOR methodology:its process amplifies the weight of individual regret,and the calculated index values further magnify this effect.This phenomenon not only affects the decision-making balance but also leads to the critical issue of ranking reversal,which undermines the reliability of the results.To address these shortcomings,this paper introduces an enhanced version of VIKOR that mitigates the impact of individual regret while preserving the method’s original objectives.This paper validates the effectiveness of the proposed enhanced VIKOR method using various MCDM approaches,including(1)ten different versions of VIKOR and(2)eleven commonly used MCDM methods.Furthermore,this study confirms that the enhanced VIKOR can be effectively applied across various existing VIKOR versions,broadening its adaptability.A sensitivity analysis is additionally performed by adjusting the criteria weights using the ordered weighted averaging method.An illustrative case study involving the selection of a manufacturing process validates the proposed model.The results show that the proposed model is robust and capable of producing more reliable outcomes.It also demonstrates its practicality and effectiveness in real-world decision-making scenarios.
基金supported by the National Natural Science Foundation of China(Nos.51771082,51971009 and 52175410)Zhenjiang Science and Technology Program(No.GY2020001)+2 种基金the Six Talent Peaks Project in Jiangsu Province(No.2019-XCL-113)the Project of Faculty of Agricultural Equipment of Jiangsu University(No.NZXB20200101)Advanced Photon Source,a US Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘In the present study,a body-centered-cubic(BCC)structured Nb/TiNb multilayer nanocomposite with high yield strength,which comprises a soft TiNb matrix and reinforced Nb nanowires,was designed and fabricated with the aim of elucidating the strengthening mechanism of Nb/TiNb multilayer nanocomposite by scanning electron microscope,transmission electron microscopy and in situ synchrotron X-ray diffraction.It is observed that the Nb/TiNb nanocomposite possesses a high yield strength of~640 MPa,significantly exceeding that of the conventional single-phaseβ-type Ti alloys.Further experimental results indicate that as plastic deformation commenced in the TiNb matrix of Nb/TiNb nanocomposite,load transfer from the soft TiNb matrix into the reinforced Nb nanowires occurred,allowing for a high load-bearing stress contribution and a significant strength enhancement of Nb/TiNb nanocomposite.Meanwhile,the embedded Nb nanowires can effectively impede the propagation of dislocation in TiNb matrix,further strengthening the present nanocomposite.These findings elucidate the strengthening mechanism of Nb/TiNb nanocomposite through the above two combinations,providing a basis for the design and development of the high-strength composites with a single-phase BCC structure for biomedical applications.
基金supported by the National Natural Science Foundation of China(No.52060015)China Postdoctoral Science Foundation(No.2019M653796)+2 种基金Natural Science Foundation of Gansu Province(No.20JR10RA197)Science and Technology Innovation Fund of Gansu Academy of Sciences(No.2019QN-08)the“Hongliu Excellent Young Talents Support Program”of the Lanzhou University of Technology。
文摘Pollutants contained in wastewater pose serious harm to the environment.Graphene-based water treatment materials show significant advantages in wastewater treatment.However,with the development of graphene-based materials,its progress in water treatment has reached a bottleneck.The challenge lies in effectively enhancing its performance in water treatment and ensuring its practicality.By employing biomimetic approaches,some exceptional properties and structures found in nature can be mimicked in graphene materials,effectively enhancing graphene's adsorption and mechanical properties.Current biomimetic methods include biomimetic mineralization,self-assembly,and templating.unfortunately,all of the above methods suffer from the disadvantages of complexity and poor bionic effect.Nevertheless,3D printing,a form of additive manufacturing(AM)technology,offers integrated molding and excellent biomimetic performance in creating biomimetic materials.This paper will cover the following aspects:(1)An overview of objects suitable for bionics in terms of functional and structural aspects,along with their properties,and a discussion of various bionic objects combined with graphene materials in water treatment and related research;(2)a comparison of different methods for preparing graphene-based bionic materials;(3)an examination of the current drawbacks and limitations of graphene-based biomimetic materials;and(4)a conclusion and future prospects,exploring the potential of using 3D printing technology to produce graphene biomimetic materials.This review aims to serve as a guide for effectively leveraging natural inspirations to create graphene-based biomimetic materials and enhance graphene properties.
基金The National Natural Science Foundation of China(No.62272239,62303214)Jiangsu Agricultural Science and Tech-nology Independent Innovation Fund(No.SJ222051).
文摘To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.
基金supported by the Natural Science Foundation of Ningbo,China(2022J149)the Natural Science Foundation of Zhejiang Province,China(LY22E020010,LTGS24B030002)+1 种基金the Ningbo Science and Technology Project,China(2022-DST-004,2022A-230G,2024Z242)the National Key Research and Development Program of China,China(2021YFF0500501)。
文摘Atomic layer deposition(ALD)has driven significant advancements in photovoltaic technologies by enabling the development of interlayers that improve both the efficiency and stability of devices.This review traces the evolution of ALD interlayers across various photovoltaic technologies,starting with early silicon solar cells and progressing into a variety of thin-film solar cells.We then delve into the role of ALD in state-of-the-art single-junction perovskite solar cells,particularly in optimizing the critical interfaces of perovskites/charge-transporting layers/-electrodes.Apart from that,we screen the functionality of ALD processing,which consists of reducing surface/interfacial defects and thus mitigating energy loss.Particularly,it enables efficient stacking of multiple thin layers,making a variety of tandem solar cells possible(silicon/perovskite,etc.)for higher efficiency.Moreover,the ALDprocessed interlayer prevents the ion migration between metals and perovskites,inhibiting the inter-diffusioninduced degradation of devices.Despite ALD technology extensively elevating the performance of above conventional/emerging solar cells,key challenges such as precursor flammability,cross-contamination during processing,and low deposition pace persist.We go over these challenges and expect our comprehensive overview of ALD techniques could shed light on pushing the envelope of photovoltaic efficiency.
基金supported by Science and Technology Project of State Grid Corporation of China(52094024003D).
文摘As modern power systems grow in complexity,accurate and efficient fault detection has become increasingly important.While many existing reviews focus on a single modality,this paper presents a comprehensive survey from a dual-modality perspective-infrared imaging and voiceprint analysis-two complementary,non-contact techniques that capture different fault characteristics.Infrared imaging excels at detecting thermal anomalies,while voiceprint signals provide insight into mechanical vibrations and internal discharge phenomena.We review both traditional signal processing and deep learning-based approaches for each modality,categorized by key processing stages such as feature extraction and classification.The paper highlights how these modalities address distinct fault types and how they may be fused to improve robustness and accuracy.Representative datasets are summarized,and practical challenges such as noise interference,limited fault samples,and deployment constraints are discussed.By offering a cross-modal,comparative analysis,this work aims to bridge fragmented research and guide future development in intelligent fault detection systems.The review concludes with research trends including multimodal fusion,lightweight models,and self-supervised learning.
基金funded by“The Factors Affecting the Accuracy of Wind Resource Assessment and Comprehensive Post-Evaluation Techniques for Operating Wind Power Projects,”grant number YJ24.002“The Research and Application of Future Medium to Long Term Wind Resource Assessment for Wind Farms Based on Artificial Intelligence Project,”grant number 2023021。
文摘Improving the accuracy of the evaluation of the performance of wind farms in large wind power bases located in complex terrain under the actual atmosphere is crucial to the sustainable development of wind power.To this end,this study combined the Weather Research and Forecasting(WRF)model with the Wind Farm Parameterization(WFP)method to investigate the wake characteristics and operational performance of large onshore wind farms in the complex terrain of Jiuquan City,Gansu Province,China.The research results showed that after verification,the systematic error of the WRF simulations was less than 3%.The WRF model and the WFP scheme simulated a significant warming phenomenon within the wind power base area,while a cooling effect was observed outside.The analysis of the wake effects indicated that the impact of PhaseⅠconstruction on PhaseⅡconstruction of the wind power base was minimal.During the operation of the entire wind power base,the wind speed within the wind farm decreased by approximately 10%,and the influence range of the predominant wind direction extended over a hundred kilometers downwind.The research conclusions provide a powerful scientific basis for optimizing design and operation,improving efficiency,minimizing the negative impacts on adjacent wind turbines,and ensuring the sustainable development of wind energy through dynamic planning and scientific assessment.