DEAR EDITOR,Ancient DNA(a DNA) from mollusc shells is considered a potential archive of historical biodiversity and evolution.However, such information is currently lacking for mollusc shells from the deep ocean, espe...DEAR EDITOR,Ancient DNA(a DNA) from mollusc shells is considered a potential archive of historical biodiversity and evolution.However, such information is currently lacking for mollusc shells from the deep ocean, especially those from acidic chemosynthetic environments theoretically unsuitable for longterm DNA preservation. Here, we report on the recovery of mitochondrial and nuclear gene markers by Illumina sequencing of a DNA from three shells of Archivesica nanshaensis – a hydrocarbon-seep vesicomyid clam previously known only from a pair of empty shells collected at a depth of 2626 m in the South China Sea.展开更多
The Ujaragssuit Nunat layered(UNL)unit in the Itsaq Gneiss Complex,west Greenland,has been consid-ered to contain one of the oldest chromitites on Earth based on~ca.4.1 Ga Hadean whole rock Pt-Os model ages and ca.3.8...The Ujaragssuit Nunat layered(UNL)unit in the Itsaq Gneiss Complex,west Greenland,has been consid-ered to contain one of the oldest chromitites on Earth based on~ca.4.1 Ga Hadean whole rock Pt-Os model ages and ca.3.81 Ga zircon U-Pb age of the surrounding orthogneiss.This study obtained zircon from the chromitite within this unit as well as granitoid sheets that intruded into the UNL unit.In-situ U-Pb-Hf-O isotope measurements were made on the zircons.Zircons from both the chromitite and the intrusive granitoids show concordant U-Pb ages of ca.2.97-2.95 Ga.In contrast,Hf and 0 isotopic anal-yses indicate that zircons in the chromitites have a different origin from those in the intrusive granitoids.Zircons from granitoids yielded Th/U ratios higher than 0.2,initial Hf isotope ratios of 0.2805-0.2807(i.e,initial:Hf value of-11 to-5),andδ^(18)O values of mostly 6.0‰-7.0‰,which are typical for felsic igneous rocks in Archean continental crust.The least altered zircons from a chromitite exhibited initial Hf isotope ratios of 0.28078-0.28084(i.e.,initial:Hf value of-1.1 to-0.4),close the chondritic value at ca.3.0 Ga and the depleted mantle at ca.3.2 Ga.These zircons also haveδ^(18)O values of 4.2‰6.1‰which correspond to typical mantle values.The other chromitite zircons yielded Th/U ratios lower than 0.1,and Hf and 0 isotopic compositions ranging between the least altered zircons and the intrusive granitoid zir-cons.These results indicate that the zircons in the chromitites crystallized before or during the 2.97-2.95 Ga granitoid intrusion and most of the zircons were altered by subsequent metasomatism.Furthermore,the present results suggest that zircons in the chromitites originally had depleted Hf iso-topic compositions at ca.3.2-3.0 Ga.This can be explained by two different models of the evolution of the UNL unit.One is that if the UNL unit was formed at>3.81 Ga as previously thought,with the zircons in the chromitites subsequently being precipitated by ca.3.2-2.95 Ga during metamorphism or metaso-matism.The other model is that the UNL unit itself was actually formed at ca.3.2-3.0 Ga,with zircon in the chromitite representing the crystallisation age of the unit,which was then tectonically incorporated into the ca.3.81 Ga orthogneiss prior to the 2.97-2.95 Ga granitoid intrusion event.In either case,our zircon analyses reveal significant evolutionary history prior to depleted mantle Hf model ages of 3.2-2.95 Ga.Revision of the geotectonic evolution of the UNL unit and the Itsaq Gneiss Complex is therefore required.展开更多
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(SMSEGL20SC02)University Grants Committee of Hong Kong(GRF12102222)。
文摘DEAR EDITOR,Ancient DNA(a DNA) from mollusc shells is considered a potential archive of historical biodiversity and evolution.However, such information is currently lacking for mollusc shells from the deep ocean, especially those from acidic chemosynthetic environments theoretically unsuitable for longterm DNA preservation. Here, we report on the recovery of mitochondrial and nuclear gene markers by Illumina sequencing of a DNA from three shells of Archivesica nanshaensis – a hydrocarbon-seep vesicomyid clam previously known only from a pair of empty shells collected at a depth of 2626 m in the South China Sea.
基金supported by JSPS KAKENHI Grant Numbers 16H05741,19KK0092Kana-zawa SAKIGAKE 2018 to T.M.,and 20 K14571 to H.S..K.S.thanks the Carlsberg Foundation for support via grant CF18-0090.
文摘The Ujaragssuit Nunat layered(UNL)unit in the Itsaq Gneiss Complex,west Greenland,has been consid-ered to contain one of the oldest chromitites on Earth based on~ca.4.1 Ga Hadean whole rock Pt-Os model ages and ca.3.81 Ga zircon U-Pb age of the surrounding orthogneiss.This study obtained zircon from the chromitite within this unit as well as granitoid sheets that intruded into the UNL unit.In-situ U-Pb-Hf-O isotope measurements were made on the zircons.Zircons from both the chromitite and the intrusive granitoids show concordant U-Pb ages of ca.2.97-2.95 Ga.In contrast,Hf and 0 isotopic anal-yses indicate that zircons in the chromitites have a different origin from those in the intrusive granitoids.Zircons from granitoids yielded Th/U ratios higher than 0.2,initial Hf isotope ratios of 0.2805-0.2807(i.e,initial:Hf value of-11 to-5),andδ^(18)O values of mostly 6.0‰-7.0‰,which are typical for felsic igneous rocks in Archean continental crust.The least altered zircons from a chromitite exhibited initial Hf isotope ratios of 0.28078-0.28084(i.e.,initial:Hf value of-1.1 to-0.4),close the chondritic value at ca.3.0 Ga and the depleted mantle at ca.3.2 Ga.These zircons also haveδ^(18)O values of 4.2‰6.1‰which correspond to typical mantle values.The other chromitite zircons yielded Th/U ratios lower than 0.1,and Hf and 0 isotopic compositions ranging between the least altered zircons and the intrusive granitoid zir-cons.These results indicate that the zircons in the chromitites crystallized before or during the 2.97-2.95 Ga granitoid intrusion and most of the zircons were altered by subsequent metasomatism.Furthermore,the present results suggest that zircons in the chromitites originally had depleted Hf iso-topic compositions at ca.3.2-3.0 Ga.This can be explained by two different models of the evolution of the UNL unit.One is that if the UNL unit was formed at>3.81 Ga as previously thought,with the zircons in the chromitites subsequently being precipitated by ca.3.2-2.95 Ga during metamorphism or metaso-matism.The other model is that the UNL unit itself was actually formed at ca.3.2-3.0 Ga,with zircon in the chromitite representing the crystallisation age of the unit,which was then tectonically incorporated into the ca.3.81 Ga orthogneiss prior to the 2.97-2.95 Ga granitoid intrusion event.In either case,our zircon analyses reveal significant evolutionary history prior to depleted mantle Hf model ages of 3.2-2.95 Ga.Revision of the geotectonic evolution of the UNL unit and the Itsaq Gneiss Complex is therefore required.