期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Formation of distinctive nanostructured metastable polymorphs mediated by kinetic transition pathways in germanium
1
作者 Mei Li Xuqiang Liu +8 位作者 Sheng Jiang Jesse S.Smith Lihua Wang Shang Peng Yongjin Chen Yu Gong Chuanlong Lin Wenge Yang Ho-Kwang Mao 《Matter and Radiation at Extremes》 2025年第3期106-113,共8页
High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression.However,the mechanism and transit... High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression.However,the mechanism and transition kinetics remain poorly understood.Here,we investigate the formation of metastable phases and nanostructures in germanium via controllable transition pathways of β-Sn Ge under rapid decompression at different rates.High-resolution transmission electron microscopy reveals three distinct metastable phases with the distinctive nanostructures:an almost perfect st12 Ge crystal,nanosized bc8/r8 structures with amorphous boundaries,and amorphous Ge with nanosized clusters (0.8–2.5 nm).Fast in situ x-ray diffraction and x-ray absorption measurements indicate that these nanostructured products form in certain pressure regions via distinct kinetic pathways and are strongly correlated with nucleation rates and electronic transitions mediated by compression rate,temperature,and stress.This work provides deep insight into the controllable synthesis of metastable materials with unique crystal symmetries and nanostructures for potential applications. 展开更多
关键词 high pressure NANOSTRUCTURES decomposition metastable phases nanostructures GERMANIUM metastable allotropes metastable p metastable polymorphs
在线阅读 下载PDF
Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction
2
作者 Xinyuan Li Zhuozhu Li +8 位作者 Wenzhong Huang Jiantao Li Wei Zhang Shihao Feng Hao Fan Zhuo Chen Sungsik Lee Congcong Cai Liang Zhou 《Chinese Chemical Letters》 2025年第9期554-558,共5页
The advancement of efficient,cheap,and durable catalysts for oxygen reduction reaction(ORR)to substitute Pt/C in metal-air batteries is of paramount importance.However,traditional solvent-based methods fall short in t... The advancement of efficient,cheap,and durable catalysts for oxygen reduction reaction(ORR)to substitute Pt/C in metal-air batteries is of paramount importance.However,traditional solvent-based methods fall short in terms of environmental benign and scalability.Herein,a solvent-free organic-inorganic selfassembly approach is explored to construct cobalt single atom and cobalt nanocluster decorated nitrogendoped porous carbon spheres(Co-SA/NC@NCS).The solvent-free synthesis demonstrates an impressively high yield(282 g/L)and the resultant Co-SA/NC@NCS possesses a high N content(6.9 wt%).Density functional theory calculations disclose that the Co-SAs and Co-NCs are able to optimize the surface oxygen adsorption capability and enhance the conductivity of the NCS,thereby facilitating the ORR performance.The sol vent-free synthesis is also feasible for the synthesis of other non-noble metal element(Fe,Ni,and Zn)decorated nitrogen-doped porous carbon spheres. 展开更多
关键词 Organic-inorganic self-assembly Nitrogen-doped carbon Oxygen reduction reaction Single atom catalyst Zn-air battery
原文传递
Martensitic transformation induced strength-ductility synergy in additively manufactured maraging 250 steel by thermal history engineering
3
作者 Shahryar Mooraj Shuai Feng +11 位作者 Matthew Luebbe Matthew Register Jian Liu Tianyi Li Baris Yavas David P.Schmidt Matthew W.Priddy Michael B.Nicholas Victor K.Champagne Mark Aindow Haiming Wen Wen Chen 《Journal of Materials Science & Technology》 2025年第8期212-225,共14页
Maraging steels are known for their exceptional strength but suffer from limited work hardening and ductility.Here,we report an intermittent printing strategy to tailor the microstructure and mechanical properties of ... Maraging steels are known for their exceptional strength but suffer from limited work hardening and ductility.Here,we report an intermittent printing strategy to tailor the microstructure and mechanical properties of maraging 250 steel via tuning the thermal history during wire-arc directed energy deposition.By introducing a dwell time between adjacent layers,the maraging 250 steel is cooled below the martensite start temperature,triggering thermally-driven martensitic transformation during the printing process.Thermal cycling during subsequent layer deposition results in the formation of reverted austenite which shows a refined microstructure and induces elemental segregation between martensite and reverted austenite.The Ni enrichment in the austenite promotes stabilization of the reverted austenite upon cooling to room temperature.The reverted austenite is metastable during deformation,leading to strain-induced martensitic transformation under loading.Specifically,a 3 min interlayer dwell time produces a maraging 250 steel with approximately 8% reverted austenite,resulting in improved work hardening via martensitic transformation induced plasticity during deformation.Meanwhile,the higher cooling rate and refined prior austenite grains lead to substantially refined martensitic grains(by approximately fivefold)together with an increased dislocation density.With 3 min interlayer dwell time,the yield strength of the printed maraging 250 steel increases from 836 MPa to 990 MPa,and the uniform elongation is doubled from 3.2% to 6.5%.This intermittent deposition strategy demonstrates the potential to tune the microstructure of maraging steels for achieving strength-ductility synergy by engineering the thermal history during additive manufacturing. 展开更多
关键词 Additive manufacturing Maraging steel Mechanical properties Martensitic transformation Thermal history
原文传递
Goss Texture Evolution of Grain Oriented Silicon Steel by High-Energy X-ray Diffraction 被引量:4
4
作者 Yong Liu Qiwu Jiang +3 位作者 Yong Wang Yang Ren A.Tidu Liang Zuo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第3期530-533,共4页
High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel... High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel during secondary recrystallization process, an in situ experiment using hi gh energy X-ray diffraction was designed. The results showed that the secondary recrystallization began when the heating temperature was 1,494 K, and the grains grew rapidly above this temperature. With an increase in annealing temperature, the large grains with 7 orientation [〈111〉//normal direction] formed and gradually occupied the dominant position. As the annealing temperature increased even further, the grains with Goss orientation to a very large size by devouring the 7 orientation grains that formed in the early annealing stage. A single crystal with a Goss orientation was observed in the GO silicon steel when the annealing temperature was 1,540 K. 展开更多
关键词 Grain oriented silicon steel TEXTURE Secondary recrystallization High energy X-ray diffraction (HEXRD)
原文传递
Phase Evolution and Thermal Expansion Behavior of aγ′Precipitated Ni-Based Superalloy by Synchrotron X-Ray Diffraction 被引量:4
5
作者 Zhiran Yan Qing Tan +6 位作者 Hua Huang Hailong Qin Yi Rong Zhongnan Bi Runguang Li Yang Ren Yandong Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第1期93-102,共10页
The phase evolution and thermal expansion behavior in superalloy during heating play an essential role in controlling the size and distribution of precipitates,as well as optimizing thermomechanical properties.Synchro... The phase evolution and thermal expansion behavior in superalloy during heating play an essential role in controlling the size and distribution of precipitates,as well as optimizing thermomechanical properties.Synchrotron X-ray diffraction is able to go through the interior of sample and can be carried out with in situ environment,and thus,it can obtain more statistics information in real time comparing with traditional methods,such as electron and optical microscopies.In this study,in situ heating synchrotron X-ray diffraction was carried out to study the phase evolution in a typicalγ′phase precipitation strengthened Ni-based superalloy,Waspaloy,from 29 to 1050°C.Theγ′,γ,M_(23)C_(6)and M C phases,including their lattice parameters,misfits,dissolution behavior and thermal expansion coefficients,were mainly investigated.Theγ′phase and M_(23)C_(6)carbides appeared obvious dissolution during heating and re-precipitated when the temperature dropped to room temperature.Combining with the microscopy results,we can indicate that the dissolution of M_(23)C_(6)leads to the growth of grain andγ′phase cannot be completely dissolved for the short holding time above the solution temperature.Besides,the coefficients of thermal expansions of all the phases are calculated and fitted as polynomials. 展开更多
关键词 SUPERALLOY WASPALOY Lattice misfit Coefficients of thermal expansion X-ray diffraction Synchrotron radiation
原文传递
In-Situ Annealing Study of Transformation of α and γ Texture of Interstitial-Free Steel Sheet by High-Energy X-Ray Diffraction 被引量:2
6
作者 LIU Yan-dong ZHANG Yu-dong +2 位作者 REN Yang Albert Tidu ZUO Liang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第5期38-41,共4页
High-energy synchrotron diffraction offers great potential for experimental study of recrystallization kinetics. An experimental design to study the recrystallization mechanism of interstitial-free (IF) steel was im... High-energy synchrotron diffraction offers great potential for experimental study of recrystallization kinetics. An experimental design to study the recrystallization mechanism of interstitial-free (IF) steel was implemented. The whole annealing process of cold-rolled IF steel with 80% reduction was observed in situ using high-energy X-ray diffraction (HEXRD). The results show how the main texture component of IF steel change, i.e. the α [∥rolling direction (RD)] fiber texture decreases and the γ [∥normal direction (ND)] fiber texture increases. The important part of the α fiber texture is that both the {100} and {112} texture decrease at the beginning of recrystallization. The γ fiber texture increases at the early stage of recrystallization which stems from the increase of {111}. Nevertheless, the {111} does not change after recrystallization. The dynamic evolution of the main texture components {100}, {112}, {111} and {111} is given by in-situ HEXRD. 展开更多
关键词 IF steel TEXTURE RECRYSTALLIZATION high-energy X-ray diffraction Debye-Scherrer ring
原文传递
Development of High-Pressure Multigrain X-Ray Diffraction for Exploring the Earth’s Interior 被引量:1
7
作者 Li Zhang Hongsheng Yuan +1 位作者 Yue Meng Ho-Kwang Mao 《Engineering》 SCIE EI 2019年第3期441-447,共7页
The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for unders... The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for understanding deep mantle processes. Such high P–T experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching;thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 lm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high P–T multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high P–T conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications. 展开更多
关键词 High pressure SYNCHROTRON X-ray Multigrain Diamond ANVIL cell MINERALS PETROLOGY Earth’s INTERIOR
在线阅读 下载PDF
Fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios 被引量:1
8
作者 张晓丹 夏成杰 +1 位作者 肖相辉 王宇杰 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期373-376,共4页
We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can... We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a high- resolution tomography scan within a short period of time, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. The image phase-retrieval procedure has been implemented to enhance the image contrast. We systematically investigated the effects of particle shape and aspect ratio on the structural properties including packing density and contact number. It turns out that large aspect ratio rod packings will have wider distributions of free volume fraction and larger mean contact numbers. 展开更多
关键词 synchrotron X-ray imaging TOMOGRAPHY rod packing structure
原文传递
Understanding fluorine-free electrolytes via small-angle X-ray scattering 被引量:1
9
作者 Kun Qian Zhou Yu +4 位作者 Yuzi Liu David J.Gosztola Randall E.Winans Lei Cheng Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期340-346,I0009,共8页
Fluorine-free electrolytes have attracted great attention because of its low-cost and environmental friendliness. However, so far, little is known about the solution structures of these electrolytes. Here,we compare t... Fluorine-free electrolytes have attracted great attention because of its low-cost and environmental friendliness. However, so far, little is known about the solution structures of these electrolytes. Here,we compare the solvation phenomenon of sodium tetraphenylborate(NaBPh_(4)) salt dissolved in organic solvents of propylene carbonate(PC), 1,2-dimethoxyethane(DME), acetonitrile(ACN) and tetrahydrofuran(THF). Small-angle X-ray scattering(SAXS) reveals a unique two-peak structural feature in this saltconcentrated PC electrolyte, while solutions using other solvents only have one scattering peak.Molecular dynamics(MD) simulations further reveal that there are anion-based clusters in addition to the short-range charge ordering in the concentrated NaBPh4/PC electrolyte. Raman spectroscopy confirms the existence of considerable contact ion pairs(CIPs). This work emphasizes the importance of global and local structural analysis, which will provide valuable clues for understanding the structureperformance relationship of electrolytes. 展开更多
关键词 Fluorine-free electrolytes Sodium-ion batteries Small-angle X-ray scattering Solvation structures Sodium tetraphenylborate
在线阅读 下载PDF
Temperature-dependent constitutive modeling of a magnesium alloy ZEK100 sheet using crystal plasticity models combined with in situ high-energy X-ray diffraction experiment
10
作者 Hyuk Jong Bong Xiaohua Hu +1 位作者 Xin Sun Yang Ren 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2801-2816,共16页
A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self... A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures. 展开更多
关键词 High-energy X-ray diffraction Crystal plasticity finite element Elastic-plastic self-consistent model TWIN Temperature
在线阅读 下载PDF
Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
11
作者 Genhao Liang Hui Cao +6 位作者 Long Cheng Junkun Zha Mingrui Bao Fei Ye Hua Zhou Aidi Zhao Xiaofang Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期186-192,共7页
Coexistence of ferromagnetism and ferroelasticity in a single material is an intriguing phenomenon,but has been rarely found.Here we studied both the ferromagnetism and ferroelasticity in a group of LaCoO3 films with ... Coexistence of ferromagnetism and ferroelasticity in a single material is an intriguing phenomenon,but has been rarely found.Here we studied both the ferromagnetism and ferroelasticity in a group of LaCoO3 films with systematically tuned atomic structures.We found that all films exhibit ferroelastic domains with four-fold symmetry and the larger domain size(higher elasticity)is always accompanied by stronger ferromagnetism.We performed synchrotron x-ray diffraction studies to investigate the backbone structure of the CoO6 octahedra,and found that both the ferromagnetism and the elasticity are simultaneously enhanced when the in-plane Co–O–Co bond angles are straightened.Therefore the study demonstrates the inextricable correlation between the ferromagnetism and ferroelasticity mediated through the octahedral backbone structure,which may open up new possibilities to develop multifunctional materials. 展开更多
关键词 perovskite oxide film FERROMAGNETISM FERROELASTICITY twin domain
原文传递
Tuning Structural and Electronic Configuration of FeN_(4) via External S for Enhanced Oxygen Reduction Reaction
12
作者 Shidong Li Lixue Xia +9 位作者 Jiantao Li Zhuo Chen Wei Zhang Jiexin Zhu Ruohan Yu Fang Liu Sungsik Lee Yan Zhao Liang Zhou Liqiang Mai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期93-101,共9页
The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of... The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of FeN_(4)has an essential impact on the catalytic performance.Herein,we construct a sulfur-modified Fe-N-C catalyst with controllable local coordination environment,where the Fe is coordinated with four in-plane N and an axial external S.The external S atom affects not only the electron distribution but also the spin state of Fe in the FeN_(4)active site.The appearance of higher valence states and spin states for Fe demonstrates the increase in unpaired electrons.With the above characteristics,the adsorption and desorption of the reactants at FeN_(4)active sites are optimized,thus promoting the oxygen reduction reaction activity.This work explores the key point in electronic configuration and coordination environment tuning of FeN_(4)through S doping and provides new insight into the construction of M-N-C-based oxygen reduction reaction catalysts. 展开更多
关键词 coordination structure electronic configuration FeN_(4)moiety oxygen reduction reaction sulfur doping
在线阅读 下载PDF
NiTi-NbTi原位复合材料的Lüders带型变形和载荷转移行为 被引量:1
13
作者 姜江 郝世杰 +3 位作者 姜大强 郭方敏 任洋 崔立山 《金属学报》 SCIE EI CAS CSCD 北大核心 2021年第7期921-927,共7页
采用电弧熔炼、锻造和拔丝方法原位合成了一种高Nb含量的NiTi-NbTi记忆合金复合材料。TEM显微分析显示,在材料内部纳米尺度的NbTi和NiTi纤维沿丝材轴向交替分布,NbTi纤维体积分数高达约70%。通过同步辐射高能X射线原位拉伸实验研究了复... 采用电弧熔炼、锻造和拔丝方法原位合成了一种高Nb含量的NiTi-NbTi记忆合金复合材料。TEM显微分析显示,在材料内部纳米尺度的NbTi和NiTi纤维沿丝材轴向交替分布,NbTi纤维体积分数高达约70%。通过同步辐射高能X射线原位拉伸实验研究了复合材料的变形机制。结果显示,虽然NiTi体积分数仅约30%,但复合材料的变形仍受NiTi的应力诱发相变控制。在加载初期,复合材料先发生均匀变形,并且在拉伸曲线出现屈服平台之前,NiTi已发生均匀相变。当平台出现之后,NiTi转而发生Lüders带型相变,进而诱发NbTi也随之发生Lüders带型变形,使整个复合材料都展现Lüders带型变形。Lüders带前沿存在载荷转移现象,载荷由正在发生相变的B2-NiTi同时转移到NbTi相及之前在均匀相变过程中形成的B19’-TiNi马氏体相。 展开更多
关键词 NiTi-NbTi复合材料 形状记忆合金 Lüders带型变形
原文传递
Exploring battery material failure mechanisms through synchrotron X-ray characterization techniques
14
作者 Lingzhe Fang Xiaozhao Liu Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS 2024年第7期128-135,共8页
Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synch... Rechargeable battery cycling performance and related safety have been persistent concerns.It is crucial to decipher the capacity fading induced by electrode material failure via a range of techniques.Among these,synchrotron-based X-ray techniques with high flux and brightness play a key role in understanding degradation mechanisms.In this comprehensive review,we summarize recent advancements in degra-dation modes and mechanisms that were revealed by synchrotron X-ray methodologies.Subsequently,an overview of X-ray absorption spectroscopy and X-ray scattering techniques is introduced for charac-terizing failure phenomena at local coordination atomic environment and long-range order crystal struc-ture scale,respectively.At last,we envision the future of exploring material failure mechanism. 展开更多
关键词 Battery failure Synchrotron-based techniques X-ray scattering X-ray absorption spectroscopy
在线阅读 下载PDF
NiTi-Nb原位复合材料的准线性超弹性变形
15
作者 姜江 郝世杰 +3 位作者 姜大强 郭方敏 任洋 崔立山 《金属学报》 SCIE EI CAS CSCD 北大核心 2023年第11期1419-1427,共9页
据文献报道,Nb纳米线增强NiTi记忆合金复合材料可展现超常的准线性超弹特性。为揭示该准线性超弹特性的产生和变形机制,通过真空感应熔炼、锻造、拔丝方法原位合成了NiTi-Nb复合材料丝材。TEM显微分析表明,Nb纳米线沿丝材轴向平行分布... 据文献报道,Nb纳米线增强NiTi记忆合金复合材料可展现超常的准线性超弹特性。为揭示该准线性超弹特性的产生和变形机制,通过真空感应熔炼、锻造、拔丝方法原位合成了NiTi-Nb复合材料丝材。TEM显微分析表明,Nb纳米线沿丝材轴向平行分布在纳米晶NiTi基体中。该材料在经历一次9%的预变形后会展现准线性超弹特性,其屈服强度达1.7 GPa,表观Young's模量约34 GPa,准线性超弹性应变接近5.5%。同步辐射高能X射线原位拉伸实验结果表明,准线性超弹性的产生与以下2点原因有关:(1)复合材料经历预变形后,Nb纳米线和NiTi基体间会产生耦合力,再次加载时,NiTi所受的耦合拉应力可以将局部区域应力诱发马氏体相变所需的外应力降低到零附近,并且耦合力越大,加载初期的相变速率越高,经过适当的预变形后,加载初始就能够持续发生高速率相变;(2) NiTi中耦合拉应力呈梯度分布,使相变应力-应变曲线不再是常见的“平台型”,转变为“硬化型”斜线。 展开更多
关键词 NiTi-Nb复合材料 应力诱发马氏体相变 准线性超弹性
原文传递
磁控功能合金功能行为的原位表征——高能X射线与中子衍射技术
16
作者 王沿东 聂志华 +5 位作者 刘冬梅 徐家桢 左良 Yang Ren P.K.Liaw D.W.Brown 《功能材料信息》 2007年第5期25-26,共2页
报道了课题组在国际上率先开展利用同步辐射高能X射线衍射和中子衍射技术,成功地实现了多场(温度场,磁场,应力场)耦合作用下,铁磁性记忆合金微结构、晶粒取向、磁结构、母相与变体取向及其与功能行为耦合的原位研究。利用原位飞行时间... 报道了课题组在国际上率先开展利用同步辐射高能X射线衍射和中子衍射技术,成功地实现了多场(温度场,磁场,应力场)耦合作用下,铁磁性记忆合金微结构、晶粒取向、磁结构、母相与变体取向及其与功能行为耦合的原位研究。利用原位飞行时间中子衍射技术,跟踪了铁磁性形状记忆合金Ni-Mn-Ga在单轴压力下马氏体变体的转变行为,这是目前其它方法(如EBSD)仍无法实现的。测试了M_s点为393K的Ni_(47)Mn_(25)Ga_(22)Co_4合金在不同的单轴压力(0,-60MPa,-110MPa,-140MPa,-7MPa)下从523~298K之间的中子衍射花样,并利用GSAS软件获得了不同单轴压力下马氏体相的反极图(IPFs)。利用高能球磨及后续热处理的方法制备出了Ni_(51)Mn_(27)Ga_(22)纳米颗粒。铁磁性Ni_2MnGa纳米颗粒功能行为受晶粒尺寸,原子有序度及固有磁结构交互作用的影响,经历了各种不同的结构转变序,这与它们相应的块体材料是完全不同的。通过高能球磨法制备出尺寸分布均匀约10 nm左右的Ni_(51)Mn_(27)Ga_(22)颗粒,其室温晶体结构由原始的体心四方结构转变为一种无序面心立方结构。高能球磨后的纳米颗粒经过623K,4h退火后,又完全转变为Heusler母相结构。利用高能X射线研究了该纳米颗粒在退火过程中结构的原位转变,证明转变动力学由一种具有非晶结构的中间相控制。高能球磨及后续热处理之后的纳米粒子,在约274K下转变为调制马氏体(14M)结构,并且该结构可以稳定到4K。 展开更多
关键词 磁控功能合金 原位表征 高能球磨
在线阅读 下载PDF
Insights into Ti doping for stabilizing the Na_(2/3)Fe_(1/3)Mn_(2/3)O_(2)cathode in sodium ion battery 被引量:5
17
作者 Tingting Yang Yalan Huang +7 位作者 Jian Zhang He Zhu Jincan Ren Tianyi Li Leighanne C.Gallington Si Lan Ligao Yang Qi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期542-548,I0013,共8页
Iron-and manganese-based layered metal oxides,as cathodes for sodium ion batteries,have received widespread attention because of the low cost and high specific capacity.However,the Jahn-teller effect of Mn^(3+)ions an... Iron-and manganese-based layered metal oxides,as cathodes for sodium ion batteries,have received widespread attention because of the low cost and high specific capacity.However,the Jahn-teller effect of Mn^(3+)ions and the resulted unstable structure usually lead to continuously capacity decay.Herein,Titanium(Ti)has been successfully doped into Na_(2/3)Fe_(2/3)Mn_(2/3)O_(2)to suppress the Jahn-Teller distortion and improve both cycling and rate performance of sodium ion batteries.In situ high-energy synchrotron X-ray diffraction study shows that Ti-doped compound(Na_(2/3)Fe_(1/3)Mn_(0.57)Ti_(0.1)O_(2))can maintain the single P2 phase without any phase transition during the whole charging/discharging process.Various electrochemical characterizations are also applied to explore the better kinetics of sodium ions transfer in the Na_(2/3)Fe_(1/3)Mn_(0.5)7 Ti_(0.1)O_(2).This work provides a comprehensive insight into the Ti-doping effects on the performance from both structural and electro kinetic perspectives. 展开更多
关键词 Layered transition metal oxides Jahn-Teller effect In situ synchrotron X-ray diffraction Phase transition
在线阅读 下载PDF
An advanced low-cost cathode composed of graphene-coated Na_(2.4)Fe_(1.8)(SO_(4))_(3) nanograins in a 3D graphene network for ultra-stable sodium storage 被引量:4
18
作者 Yongjin Fang Qi Liu +7 位作者 Xiangming Feng Weihua Chen Xinping Ai Liguang Wang Liang Wang Zhiyuan Ma Yang Ren Hanxi YangYuliang Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期564-570,共7页
Iron-based electrodes have attracted great attention for sodium storage because of the distinct cost effectiveness.However,exploring suitable iron-based electrodes with high power density and long duration remains a b... Iron-based electrodes have attracted great attention for sodium storage because of the distinct cost effectiveness.However,exploring suitable iron-based electrodes with high power density and long duration remains a big challenge.Herein,a spray-drying strategy is adopted to construct graphene-coated Na_(2.4)Fe_(1.8)(SO_(4))_(3) nanograins in a 3D graphene microsphere network.The unique structural and compositional advantages endow these electrodes to exhibit outstanding electrochemical properties with remarkable rate performance and long cycle life.Mechanism analyses further explain the outstanding electrochemical properties from the structural aspect. 展开更多
关键词 Na_(2.4)Fe_(1.8)(SO_(4))_(3) Polyanions Spray-drying CATHODE Sodium-ion batteries
在线阅读 下载PDF
In situ scattering study of multiscale structural evolution during liquid–liquid phase transition in Mg-based metallic glasses 被引量:6
19
作者 Kang-Hua Li Jia-Cheng Ge +13 位作者 Si-Nan Liu Shu Fu Zi-Xuan Yin Wen-Tao Zhang Guo-Xing Chen Shao-Chong Wei Hua Ji Tao Feng Qi Liu Xun-Li Wang Xiao-Bing Zuo Yang Ren Horst Hahn Si Lan 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3107-3116,共10页
The glass-forming ability of Mg-Cu-Gd alloys could be significantly promoted with the addition of Ag.A calorimetric anomaly could be observed in the supercooled liquid region of the Mg-Cu-Ag-Gd metallic glass,indicati... The glass-forming ability of Mg-Cu-Gd alloys could be significantly promoted with the addition of Ag.A calorimetric anomaly could be observed in the supercooled liquid region of the Mg-Cu-Ag-Gd metallic glass,indicating the occurrence of a liquid-state phase transition driven by entropy.However,the underlying mechanism of the polyamorphous phase transition remains unsettled.In the paper,in situ scattering techniques were employed to reveal multiscale structure evidence in a Mg65Cu15Ag10Gd10metallic glass with an anomalous exothermic peak upon heating.Resistivity measurements indicate a reentrant behavior for the Mg-Cu-Ag-Gd metallic glass in the anomalous exothermic peak temperature region during heating.In situ synchrotron diffraction results revealed that the local atomic structure tends to be ordered and loosely packed first,followed by reentering into the initial state upon heating.Moreover,time-resolved small-angle synchrotron X-ray scattering(SAXS) results show an increase in nanoscale heterogeneity first followed by a reentrant supercooled liquid behavior.A core-shell structure model has been used to fit the SAXS profiles when polyamorphous phase transition occurs.In contrast,there is no structure anomaly for the reference Mg-Cu-Gd alloy system.The detailed multiscale structural evidence suggests the occurrence of a liquid-liquid phase transition followed by a reentrant behavior in the MgCu-Ag-Gd metallic glass.Our results deepen the understanding of the structural origin of the glass-forming ability and shed light on the possibility of tuning the physical and mechanical properties by heat-treatment in the supercooled liquid region of Mg-based metallic glasses. 展开更多
关键词 Metallic glasses Anomalous exothermal peak Polyamorphous transition Synchrotron scattering
原文传递
Towards extreme fast charging of 4.6 V LiCoO_(2) via mitigating high-voltage kinetic hindrance 被引量:3
20
作者 Yu Tang Jun Zhao +13 位作者 He Zhu Jincan Ren Wei Wang Yongjin Fang Zhiyong Huang Zijia Yin Yalan Huang Binghao Zhang Tingting Yang Tianyi Li Leighanne CGallington Si Lan Yang Ren Qi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期13-20,I0001,共9页
High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its ra... High-voltage LiCoO_(2)(LCO) is an attractive cathode for ultra-high energy density lithium-ion batteries(LIBs) in the 3 C markets.However,the sluggish lithium-ion diffusion at high voltage significantly hampers its rate capability.Herein,combining experiments with density functional theory(DFT) calculations,we demonstrate that the kinetic limitations can be mitigated by a facial Mg^(2+)+Gd^(3+)co-doping method.The as-prepared LCO shows significantly enhanced Li-ion diffusion mobility at high voltage,making more homogenous Li-ion de/intercalation at a high-rate charge/discharge process.The homogeneity enables the structural stability of LCO at a high-rate current density,inhibiting stress accumulation and irreversible phase transition.When used in combination with a Li metal anode,the doped LCO shows an extreme fast charging(XFC) capability,with a superior high capacity of 193.1 mAh g^(-1)even at the current density of 20 C and high-rate capacity retention of 91.3% after 100 cycles at 5 C.This work provides a new insight to prepare XFC high-voltage LCO cathode materials. 展开更多
关键词 Li-ion battery High-voltage LiCoO_(2) Li-ion diffusion Structural evolution Fast charging
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部