This past year, 2024, is on track to be the warmest year, joining 2023 as the two hottest years on record. With the exceptional heat, weather and climate extremes were common across the world. In particular, 2024 has ...This past year, 2024, is on track to be the warmest year, joining 2023 as the two hottest years on record. With the exceptional heat, weather and climate extremes were common across the world. In particular, 2024 has seen a remarkable run of extreme precipitation events and resulting impacts. Here, we provide an overview of the most notable extreme events of the year, including extreme precipitation and floods, tropical cyclones, and droughts. The characteristics and impacts of these extreme events are summarized, followed by discussion on the physical drivers and the role of global warming.Finally, we also discuss the future prospects in extreme event studies, including impact-based perspectives, challenges in attribution of precipitation extremes, and the existing gap to minimize impacts from climate extremes.展开更多
We present results from our Giant Metrewave Radio Telescope(GMRT)HⅠ,Himalayan Chandra Telescope(HCT)Hα,1 m Sampurnanand Telescope(ST)and 1.3 m Devasthal Fast Optical Telescope(DFOT)deep optical observations of the N...We present results from our Giant Metrewave Radio Telescope(GMRT)HⅠ,Himalayan Chandra Telescope(HCT)Hα,1 m Sampurnanand Telescope(ST)and 1.3 m Devasthal Fast Optical Telescope(DFOT)deep optical observations of the NGC 7805/6(Arp 112)system to test KUG 2359+311’s tidal dwarf galaxy(TDG)candidacy and explore the properties of the interacting system.Our GMRT HⅠmap shows no HⅠdetection associated with KUG 2359+311,nor any HⅠtail or bridge-like structure connecting KUG 2359+311 to the NGC 7805/6 system.Our HCT Hαimage,on the other hand,displays strong detections in KUG 2359+311,with net SFR0.035±0.009 M_(⊙)yr^(-1).The Hαdata constrain the redshift of KUG 2359+311 to 0.00≤z≤0.043,compared to the redshift of NGC 7806 of0.015.TDGs detected to date have all been HⅠrich,and displayed HⅠ,ionised gas and stellar tidal debris trails(bridges or tails)linking them to their parent systems.However,neither our HⅠdata nor our optical imaging,while three magnitudes deeper than SDSS,reveals a tidal trail connecting KUG 2359+311 to NGC 7805/6.Lack of HⅠ,presence of an old stellar population,ongoing star formation and reasonably high SFR compared to normal dwarf galaxies suggest that KUG 2359+311 may not be an Arp 112 TDG.It is most likely a case of a regular gas-rich dwarf galaxy undergoing a morphological transformation after having lost its entire gas content to an interaction with the Arp 112 system.Redshift and metallicity from future spectroscopic observations of KUG 2359+311 would help clarify the nature of this enigmatic structure.展开更多
Androgen deprivation therapy(ADT)can negatively affect sexual function,and only a minority of patients report sexual activity.We reviewed the existing literature regarding the proportion of men who remained sexually a...Androgen deprivation therapy(ADT)can negatively affect sexual function,and only a minority of patients report sexual activity.We reviewed the existing literature regarding the proportion of men who remained sexually active during and after ADT.The PubMed database was searched for studies published over the past 20 years.We selected and reviewed randomized clinical trials that provided sexual function data at baseline and during and after ADT.The primary outcome measure was the sexual function.Studies assessed sexual function using quality of life patient-reported outcome measures,which included sexual potency/activity evaluation.Information from 2947 patients was analyzed in this review.The median age of patients was 70 years.At baseline,a median of 49.9%(95%confidence interval[Cl]:49.1%-50.7%)of the patients reported being sexually active.At 6 months,12 months,and 2 years or later of ADT treatment,a median of 10.3%(95%Cl:10.2%-10.5%),8.9%(95%Cl:8.6%-9.2%),and 8.3%(95%Cl:8.2%-8.5%)of the patients reported being sexually active,respectively.Considering that half of the patients were sexually active at baseline,it seems probable that more than 10%of the patients who were sexually active before starting ADT remained sexually active when undergoing ADT.In conclusion,despite the common belief that ADT eliminates sexual activity,this analysis found that approximately 1 in 10 men are sexually active when on ADT,and this proportion is likely increased in men who are sexually active before starting ADT.Attention to sexual activity should not be dismissed in men on ADT.展开更多
With the advancement of artificial intelligence,optic in-sensing reservoir computing based on emerging semiconductor devices is high desirable for real-time analog signal processing.Here,we disclose a flexible optomem...With the advancement of artificial intelligence,optic in-sensing reservoir computing based on emerging semiconductor devices is high desirable for real-time analog signal processing.Here,we disclose a flexible optomemristor based on C_(27)H_(30)O_(15)/FeOx heterostructure that presents a highly sensitive to the light stimuli and artificial optic synaptic features such as short-and long-term plasticity(STP and LTP),enabling the developed optomemristor to implement complex analogy signal processing through building a real-physical dynamic-based in-sensing reservoir computing algorithm and yielding an accuracy of 94.88%for speech recognition.The charge trapping and detrapping mediated by the optic active layer of C_(27)H_(30)O_(15) that is extracted from the lotus flower is response for the positive photoconductance memory in the prepared optomemristor.This work provides a feasible organic−inorganic heterostructure as well as an optic in-sensing vision computing for an advanced optic computing system in future complex signal processing.展开更多
Premature perovskite films rapidly form at the FAI/PbI_(2)interface,inhibiting further reactions between FAI and PbI_(2)during the fabrication of perovskite films via the evaporating-spraying hybrid method according t...Premature perovskite films rapidly form at the FAI/PbI_(2)interface,inhibiting further reactions between FAI and PbI_(2)during the fabrication of perovskite films via the evaporating-spraying hybrid method according to our previous research.In this research,triphenylphosphine oxide(TPPO)was proved to be an effective coordinator that reduces the reaction rate between FAI and PbI_(2)at the initial stage,which can be attributed to the hydrogen(H)bonds between FA^(+)and TPPO,and coordinate bonds between TPPO and PbI_(2).Additionally,the quality of perovskite films improved significantly:the trap state density decreased from 1.6×10^(18)to 3.17×10^(17)cm^(-3),while the crystal size increased from 740 to 940 nm.The champion perovskite device achieved a remarkable efficiency of 20.93%(0.09 cm^(2))and 16.75%(63.7 cm^(2)),marking one of the highest reported results for the evaporating-spraying hybrid method.Moreover,the perovskite solar cells retained over 80%of their initial performances after 600 h of storage at 60℃in a nitrogen environment without encapsulation.It also maintained approximately 90%of its initial performance after continuous illumination at 25℃for 1400 h under the same conditions.展开更多
We present a comprehensive investigation into the physical properties of intermetallic ErPd_(2)Si_(2),a compound renowned for its intriguing magnetic and electronic characteristics.We confirm the tetragonal crystal st...We present a comprehensive investigation into the physical properties of intermetallic ErPd_(2)Si_(2),a compound renowned for its intriguing magnetic and electronic characteristics.We confirm the tetragonal crystal structure of ErPd_(2)Si_(2)within the I4/mmm space group.Notably,we observed anisotropic thermal expansion,with the lattice constant a expanding and c contracting between 15 and300 K.This behaviour is attributed to lattice vibrations and electronic contributions.Heat capacity measurements revealed three distinct temperature regimes:T_(1)~3.0 K,T_(N)~4.20 K,and T_(2)~15.31 K.These correspond to thedisappearance of spin-density waves,the onset of an incommensurate antiferromagnetic(AFM)structure,and the crystal-field splitting and/or the presence of short-range spin fluctuations,respectively.Remarkably,the AFM phase transition anomaly was observed exclusively in lowfield magnetization data(120 Oe)at T_(N).A high magnetic field(B=3 T)effectively suppressed this anomaly,likely due to spin-flop and spin-flip transitions.Furthermore,the extracted effective paramagnetic(PM)moments closely matched the expected theoretical value,suggesting a dominant magnetic contribution from localized 4f spins of Er.Additionally,significant differences in resistance(R)values at low temperatures under applied B indicated a magnetoresistance(MR)effect with a minimum value of-4.36%.Notably,the measured MR effect exhibited anisotropic behavior,where changes in the strength or direction of the applied B induced variations in the MR effect.A twofold symmetry of R was discerned at 3 and9 T,originating from the orientation of spin moments relative to the applied B.Intriguingly,above T_(N),shortrange spin fluctuations also displayed a preferred orientation along the c-axis due to single-ion anisotropy.Moreover,the R demonstrated a clear B dependence below30 K.The magnetic-field point where R transitions from linear B dependence to a stable state increased with temperature:~3 T(at 2 K),~4.5 T(at 4 K),and~6 T(at 10 K).Our study sheds light on the magnetic and electronic properties of ErPd_(2)Si_(2),offering valuable insights for potential applications in spintronics and quantum technologies.展开更多
Zinc-ion hybrid fiber supercapacitors(FSCs)are promising energy storages for wearable electronics owing to their high energy density,good flexibility,and weavability.However,it is still a critical challenge to optimiz...Zinc-ion hybrid fiber supercapacitors(FSCs)are promising energy storages for wearable electronics owing to their high energy density,good flexibility,and weavability.However,it is still a critical challenge to optimize the structure of the designed FSC to improve energy density and realize the continuous fabrication of super-long FSCs.Herein,we propose a braided coaxial zinc-ion hybrid FSC with several meters of Ti_(3)C_(2)T_x MXene cathode as core electrodes,and shell zinc fiber anode was braided on the surface of the Ti_(3)C_(2)T_x MXene fibers across the solid electrolytes.According to the simulated results using ANSYS Maxwell software,the braided structures revealed a higher capacitance compared to the spring-like structures.The resulting FSCs exhibited a high areal capacitance of 214 mF cm^(-2),the energy density of 42.8μWh cm^(-2)at 5 mV s^(-1),and excellent cycling stability with 83.58%capacity retention after 5000 cycles.The coaxial FSC was tied several kinds of knots,proving a shape-controllable fiber energy storage.Furthermore,the knitted FSC showed superior stability and weavability,which can be woven into watch belts or embedded into textiles to power smart watches and LED arrays for a few days.展开更多
Rechargeable zinc-air batteries(ZABs)are currently receiving extensive attention because of their extremely high theoretical specific energy density,low manufacturing costs,and environmental friendliness.Exploring bif...Rechargeable zinc-air batteries(ZABs)are currently receiving extensive attention because of their extremely high theoretical specific energy density,low manufacturing costs,and environmental friendliness.Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs.Atomically dispersed metal-nitrogen-carbon(M-N-C)catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis.In this work,general principles for designing atomically dispersed M-N-C are reviewed.Then,strategies aiming at enhancing the bifunctional catalytic activity and stability are presented.Finally,the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined.It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs.展开更多
Nickel-based cathodes in aqueous nickel-zinc batteries typically suffer from sluggish reaction kinetics and limited energy density.In situ introduction of metal phosphides and rational construction of heterostructures...Nickel-based cathodes in aqueous nickel-zinc batteries typically suffer from sluggish reaction kinetics and limited energy density.In situ introduction of metal phosphides and rational construction of heterostructures can effectively promote electron/ion transport.However,the complex evolution of phosphidation and intractable phosphidizing degree greatly affect the composition of active phase,active sites,charge transfer rate,and ion adsorption strength of cathodes.Herein,the critical bimetallic phosphide layer(CBPL)is constructed on the NiCo-layered double hydroxide(NiCo-LDH)skeleton by a controllable anion-exchange strategy,yielding a novel nanohybrid cathode(NiCo-P1.0,1.0 representing the mass ratio of Na_(2)H_(2)PO_(2)to NiCo-LDH).The high-conductivity CBPL with the inner NiCo-LDH forms extensive heterostructures,effectively regulating the electronic structure via charge transfer,thereby improving electrical conductivity.Remarkably,the CBPL exhibits unexpected electrochemical activity and synergizes with NiCo-LDH for electrode reactions,ultimately delivering extra energy.Benefiting from the bifunctional CBPL,NiCo-P1.0 delivers an optimal capacity of 286.64 mAh g^(−1)at 1C(1C=289 mAh g^(−1))and superb rate performance(a capacity retention of 72.22%at 40C).The assembled NiCo-P1.0//Zn battery achieves ultrahigh energy/power density(503.62 Wh kg^(−1)/18.62 kW kg^(−1),based on the mass loading of active material on the cathode),and the flexible quasi-solid-state pouch cell validates its practicality.This work demonstrates the superiority of bifunctional CBPL for surface modification,providing an effective and scalable compositing strategy in achieving high-performance cathodes for aqueous batteries.展开更多
Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suita...Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suitable supports,ADMS materials provide unique catalytic sites with highly tunable electronic structures.This review summarizes recent advancements in the field,with a focus on the critical roles of support materials,coordination environments,and the mechanisms underlying catalytic activity at the atomic level.First,commonly used density functional theory(DFT)simulations are reviewed,emphasizing their pivotal role in elucidating reaction mechanisms and predicting the behavior of ADMS in electrochemical reactions for hydrogen energy utilization.Then,advancements in ADMS for half-cell electrochemical reactions,including oxygen evolution reaction,hydrogen evolution reaction,and oxygen reduction reaction,as well as their applications in fuel cells and water splitting,are summarized.Finally,the challenges and future prospects of ADMS are discussed.This review underscores the transformative potential of ADMS in electrocatalysis,paving the way for innovative and sustainable energy conversion technologies.展开更多
基金jointly supported by the National Natural Science Foundation of China (Grant Nos.42422502 and 42275038)the China Meteorological Administration Climate Change Special Program (Grant No.QBZ202306)funded by the Met Office Climate Science for Service Partnership (CSSP) China project under the International Science Partnerships Fund (ISPF)。
文摘This past year, 2024, is on track to be the warmest year, joining 2023 as the two hottest years on record. With the exceptional heat, weather and climate extremes were common across the world. In particular, 2024 has seen a remarkable run of extreme precipitation events and resulting impacts. Here, we provide an overview of the most notable extreme events of the year, including extreme precipitation and floods, tropical cyclones, and droughts. The characteristics and impacts of these extreme events are summarized, followed by discussion on the physical drivers and the role of global warming.Finally, we also discuss the future prospects in extreme event studies, including impact-based perspectives, challenges in attribution of precipitation extremes, and the existing gap to minimize impacts from climate extremes.
基金support by Fundacao paraa Ciencia e a Tecnologia(FCT)through national funds(UID/FIS/04434/2013)FCT/MCTES through national funds(PIDDAC)by this grant UID/FIS/04434/2019+3 种基金by FEDER through COMPETE2020(POCI-01-0145FED ER-007672)support from DL 57/2016/CP1364/CT0009the support of NRF(Grant Nos.105925,109577,120385,and 120378)the National Natural Science Foundation of China(Grant No.11828301)。
文摘We present results from our Giant Metrewave Radio Telescope(GMRT)HⅠ,Himalayan Chandra Telescope(HCT)Hα,1 m Sampurnanand Telescope(ST)and 1.3 m Devasthal Fast Optical Telescope(DFOT)deep optical observations of the NGC 7805/6(Arp 112)system to test KUG 2359+311’s tidal dwarf galaxy(TDG)candidacy and explore the properties of the interacting system.Our GMRT HⅠmap shows no HⅠdetection associated with KUG 2359+311,nor any HⅠtail or bridge-like structure connecting KUG 2359+311 to the NGC 7805/6 system.Our HCT Hαimage,on the other hand,displays strong detections in KUG 2359+311,with net SFR0.035±0.009 M_(⊙)yr^(-1).The Hαdata constrain the redshift of KUG 2359+311 to 0.00≤z≤0.043,compared to the redshift of NGC 7806 of0.015.TDGs detected to date have all been HⅠrich,and displayed HⅠ,ionised gas and stellar tidal debris trails(bridges or tails)linking them to their parent systems.However,neither our HⅠdata nor our optical imaging,while three magnitudes deeper than SDSS,reveals a tidal trail connecting KUG 2359+311 to NGC 7805/6.Lack of HⅠ,presence of an old stellar population,ongoing star formation and reasonably high SFR compared to normal dwarf galaxies suggest that KUG 2359+311 may not be an Arp 112 TDG.It is most likely a case of a regular gas-rich dwarf galaxy undergoing a morphological transformation after having lost its entire gas content to an interaction with the Arp 112 system.Redshift and metallicity from future spectroscopic observations of KUG 2359+311 would help clarify the nature of this enigmatic structure.
文摘Androgen deprivation therapy(ADT)can negatively affect sexual function,and only a minority of patients report sexual activity.We reviewed the existing literature regarding the proportion of men who remained sexually active during and after ADT.The PubMed database was searched for studies published over the past 20 years.We selected and reviewed randomized clinical trials that provided sexual function data at baseline and during and after ADT.The primary outcome measure was the sexual function.Studies assessed sexual function using quality of life patient-reported outcome measures,which included sexual potency/activity evaluation.Information from 2947 patients was analyzed in this review.The median age of patients was 70 years.At baseline,a median of 49.9%(95%confidence interval[Cl]:49.1%-50.7%)of the patients reported being sexually active.At 6 months,12 months,and 2 years or later of ADT treatment,a median of 10.3%(95%Cl:10.2%-10.5%),8.9%(95%Cl:8.6%-9.2%),and 8.3%(95%Cl:8.2%-8.5%)of the patients reported being sexually active,respectively.Considering that half of the patients were sexually active at baseline,it seems probable that more than 10%of the patients who were sexually active before starting ADT remained sexually active when undergoing ADT.In conclusion,despite the common belief that ADT eliminates sexual activity,this analysis found that approximately 1 in 10 men are sexually active when on ADT,and this proportion is likely increased in men who are sexually active before starting ADT.Attention to sexual activity should not be dismissed in men on ADT.
基金supported by the Key Project of Chongqing Natural Science Foundation Joint Fund[CSTB2023NSCQ-LZX0103,(G.Z.)]Chongqing Natural Science Foundation[CSTB2024NSCQ-MSX0012,(C.L.)]+1 种基金Fundamental Research Funds for the Central Universities[SWUZLPY03,(G.Z.)]Fundamental Research Funds for the Central Universities[Swu020019,(G.Z.):SWU-XDJH202319,(G.Z.)1].
文摘With the advancement of artificial intelligence,optic in-sensing reservoir computing based on emerging semiconductor devices is high desirable for real-time analog signal processing.Here,we disclose a flexible optomemristor based on C_(27)H_(30)O_(15)/FeOx heterostructure that presents a highly sensitive to the light stimuli and artificial optic synaptic features such as short-and long-term plasticity(STP and LTP),enabling the developed optomemristor to implement complex analogy signal processing through building a real-physical dynamic-based in-sensing reservoir computing algorithm and yielding an accuracy of 94.88%for speech recognition.The charge trapping and detrapping mediated by the optic active layer of C_(27)H_(30)O_(15) that is extracted from the lotus flower is response for the positive photoconductance memory in the prepared optomemristor.This work provides a feasible organic−inorganic heterostructure as well as an optic in-sensing vision computing for an advanced optic computing system in future complex signal processing.
基金supported by the National Natural Science Foundation of China(22279031)the Key Research and Development Plan of Hubei Province(2023BAB 109)+3 种基金the Longzhong Talent Planthe Joint Foundation for Innovation and Development of Hubei Natural Science Foundation(2022CFD079,2023AFD034 and 2023AFD032)Graduate Quality Engineering Funding Project of Hubei University of Arts and Sciences(YZ3202304)Independent Innovation Projects of the Hubei Longzhong Laboratory(2024KF-07 and 2024KF-33)。
文摘Premature perovskite films rapidly form at the FAI/PbI_(2)interface,inhibiting further reactions between FAI and PbI_(2)during the fabrication of perovskite films via the evaporating-spraying hybrid method according to our previous research.In this research,triphenylphosphine oxide(TPPO)was proved to be an effective coordinator that reduces the reaction rate between FAI and PbI_(2)at the initial stage,which can be attributed to the hydrogen(H)bonds between FA^(+)and TPPO,and coordinate bonds between TPPO and PbI_(2).Additionally,the quality of perovskite films improved significantly:the trap state density decreased from 1.6×10^(18)to 3.17×10^(17)cm^(-3),while the crystal size increased from 740 to 940 nm.The champion perovskite device achieved a remarkable efficiency of 20.93%(0.09 cm^(2))and 16.75%(63.7 cm^(2)),marking one of the highest reported results for the evaporating-spraying hybrid method.Moreover,the perovskite solar cells retained over 80%of their initial performances after 600 h of storage at 60℃in a nitrogen environment without encapsulation.It also maintained approximately 90%of its initial performance after continuous illumination at 25℃for 1400 h under the same conditions.
基金supported by the Science and Technology Development Fund,Macao SAR,China(File Nos.0090/2021/A2 and 0104/2024/AFJ)University of Macao(MYRG-GRG2024-00158-IAPME)+3 种基金the support from the National Natural Science Foundation of China(No.52275467)the support from the National Natural Science Foundation of China(No.52271037)Shaanxi Provincial Natural Science Fundamental Research Program,China(No.2023-JC-ZD-23)the Fundamental Research Funds for the Central Universities of China(No.D5000240307)
文摘We present a comprehensive investigation into the physical properties of intermetallic ErPd_(2)Si_(2),a compound renowned for its intriguing magnetic and electronic characteristics.We confirm the tetragonal crystal structure of ErPd_(2)Si_(2)within the I4/mmm space group.Notably,we observed anisotropic thermal expansion,with the lattice constant a expanding and c contracting between 15 and300 K.This behaviour is attributed to lattice vibrations and electronic contributions.Heat capacity measurements revealed three distinct temperature regimes:T_(1)~3.0 K,T_(N)~4.20 K,and T_(2)~15.31 K.These correspond to thedisappearance of spin-density waves,the onset of an incommensurate antiferromagnetic(AFM)structure,and the crystal-field splitting and/or the presence of short-range spin fluctuations,respectively.Remarkably,the AFM phase transition anomaly was observed exclusively in lowfield magnetization data(120 Oe)at T_(N).A high magnetic field(B=3 T)effectively suppressed this anomaly,likely due to spin-flop and spin-flip transitions.Furthermore,the extracted effective paramagnetic(PM)moments closely matched the expected theoretical value,suggesting a dominant magnetic contribution from localized 4f spins of Er.Additionally,significant differences in resistance(R)values at low temperatures under applied B indicated a magnetoresistance(MR)effect with a minimum value of-4.36%.Notably,the measured MR effect exhibited anisotropic behavior,where changes in the strength or direction of the applied B induced variations in the MR effect.A twofold symmetry of R was discerned at 3 and9 T,originating from the orientation of spin moments relative to the applied B.Intriguingly,above T_(N),shortrange spin fluctuations also displayed a preferred orientation along the c-axis due to single-ion anisotropy.Moreover,the R demonstrated a clear B dependence below30 K.The magnetic-field point where R transitions from linear B dependence to a stable state increased with temperature:~3 T(at 2 K),~4.5 T(at 4 K),and~6 T(at 10 K).Our study sheds light on the magnetic and electronic properties of ErPd_(2)Si_(2),offering valuable insights for potential applications in spintronics and quantum technologies.
基金This work was supported by National Natural Science Foundation of China(51672308,51972025,61888102,62004187)Hebei Natural Science Foundation of Hebei(E2019208280).
文摘Zinc-ion hybrid fiber supercapacitors(FSCs)are promising energy storages for wearable electronics owing to their high energy density,good flexibility,and weavability.However,it is still a critical challenge to optimize the structure of the designed FSC to improve energy density and realize the continuous fabrication of super-long FSCs.Herein,we propose a braided coaxial zinc-ion hybrid FSC with several meters of Ti_(3)C_(2)T_x MXene cathode as core electrodes,and shell zinc fiber anode was braided on the surface of the Ti_(3)C_(2)T_x MXene fibers across the solid electrolytes.According to the simulated results using ANSYS Maxwell software,the braided structures revealed a higher capacitance compared to the spring-like structures.The resulting FSCs exhibited a high areal capacitance of 214 mF cm^(-2),the energy density of 42.8μWh cm^(-2)at 5 mV s^(-1),and excellent cycling stability with 83.58%capacity retention after 5000 cycles.The coaxial FSC was tied several kinds of knots,proving a shape-controllable fiber energy storage.Furthermore,the knitted FSC showed superior stability and weavability,which can be woven into watch belts or embedded into textiles to power smart watches and LED arrays for a few days.
基金This work is supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)Centre Québéco is sur les Materiaux Fonctionnels(CQMF),Fonds de Recherche du Québec-Nature et Technologies(FRQNT)+2 种基金Institut National de la Recherche Scientifique(INRS)This work is also supported by the National Natural Science Foundation of China(21972017)the“Scientific and Technical Innovation Action Plan”Hong Kong,Macao and Taiwan Science&Technology Cooperation Project of Shanghai Science and Technology Committee(19160760600).F.Dong gratefully acknowledges scholarships from the China Scholarship Council(CSC).
文摘Rechargeable zinc-air batteries(ZABs)are currently receiving extensive attention because of their extremely high theoretical specific energy density,low manufacturing costs,and environmental friendliness.Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs.Atomically dispersed metal-nitrogen-carbon(M-N-C)catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis.In this work,general principles for designing atomically dispersed M-N-C are reviewed.Then,strategies aiming at enhancing the bifunctional catalytic activity and stability are presented.Finally,the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined.It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs.
基金supported by the National Natural Science Foundation of China(No.52373249,W2433146)the Science and Technology Project of Yibin Sanjiang New Area(No.2023SJXQSXZJ003)the Fundamental Research Funds for the Central Universities(No.20822041F4045).
文摘Nickel-based cathodes in aqueous nickel-zinc batteries typically suffer from sluggish reaction kinetics and limited energy density.In situ introduction of metal phosphides and rational construction of heterostructures can effectively promote electron/ion transport.However,the complex evolution of phosphidation and intractable phosphidizing degree greatly affect the composition of active phase,active sites,charge transfer rate,and ion adsorption strength of cathodes.Herein,the critical bimetallic phosphide layer(CBPL)is constructed on the NiCo-layered double hydroxide(NiCo-LDH)skeleton by a controllable anion-exchange strategy,yielding a novel nanohybrid cathode(NiCo-P1.0,1.0 representing the mass ratio of Na_(2)H_(2)PO_(2)to NiCo-LDH).The high-conductivity CBPL with the inner NiCo-LDH forms extensive heterostructures,effectively regulating the electronic structure via charge transfer,thereby improving electrical conductivity.Remarkably,the CBPL exhibits unexpected electrochemical activity and synergizes with NiCo-LDH for electrode reactions,ultimately delivering extra energy.Benefiting from the bifunctional CBPL,NiCo-P1.0 delivers an optimal capacity of 286.64 mAh g^(−1)at 1C(1C=289 mAh g^(−1))and superb rate performance(a capacity retention of 72.22%at 40C).The assembled NiCo-P1.0//Zn battery achieves ultrahigh energy/power density(503.62 Wh kg^(−1)/18.62 kW kg^(−1),based on the mass loading of active material on the cathode),and the flexible quasi-solid-state pouch cell validates its practicality.This work demonstrates the superiority of bifunctional CBPL for surface modification,providing an effective and scalable compositing strategy in achieving high-performance cathodes for aqueous batteries.
基金supported by the National Natural Science Foundation of China(22005072,21965006)Guizhou Provincial Key Technology R&D Program(Qian Ke He support(2023)General 122)+3 种基金Guiyang Guian Science and Technology Personnel Training Project([2024]2-13)Youth Science and Technology Talent Development Project from Guizhou Provincial Department of Education(KY[2022]163)Guizhou Provincial Science and Technology Foundation(KYJZ[2024]029)the ETS Marcelle-Gauvreau Engineering Research Chair program.
文摘Atomically dispersed metal site(ADMS)materials have emerged as a promising class of materials for electrocatalysis reactions in the field of energy conversion.Characterized by individual metal atoms dispersed on suitable supports,ADMS materials provide unique catalytic sites with highly tunable electronic structures.This review summarizes recent advancements in the field,with a focus on the critical roles of support materials,coordination environments,and the mechanisms underlying catalytic activity at the atomic level.First,commonly used density functional theory(DFT)simulations are reviewed,emphasizing their pivotal role in elucidating reaction mechanisms and predicting the behavior of ADMS in electrochemical reactions for hydrogen energy utilization.Then,advancements in ADMS for half-cell electrochemical reactions,including oxygen evolution reaction,hydrogen evolution reaction,and oxygen reduction reaction,as well as their applications in fuel cells and water splitting,are summarized.Finally,the challenges and future prospects of ADMS are discussed.This review underscores the transformative potential of ADMS in electrocatalysis,paving the way for innovative and sustainable energy conversion technologies.