Just as Dickens wrote,it is the best of times,it is the worst of times.Ever increasing traffic demands will bring us into the era of 5G.Vast of unprecedented or even unanticipated fancy wireless applications will defi...Just as Dickens wrote,it is the best of times,it is the worst of times.Ever increasing traffic demands will bring us into the era of 5G.Vast of unprecedented or even unanticipated fancy wireless applications will definitely change our life.展开更多
There have been reports for many years that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs) attracts a lot of attention as a very...There have been reports for many years that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs) attracts a lot of attention as a very promising candidate for short-term EQ prediction. In this review we present a possible use of VLF/LF (very low frequency (3-30 kHz)/low frequency (30-300 kHz)) radio sounding of seismo-ionospheric perturbations. In order to avoid the overlapping with my own previous reviews, we first show some pioneering results for the Kobe EQ and we try to present the latest results including the statistical evidence on the correlation between the VLF/LF propagation anomalies (ionospheric perturbations) and EQs (especially with large magnitude and with shallow depth), medium-distance (6-8 Mm) propagation anomalies, the fluctuation spectra of subionospheric VLF/LF data (the effect of atmospheric gravity waves, the effect of Earth's tides, etc.), and the mechanism of lithosphere-atmosphere-ionosphere coupling. Finally, we indicate the present situation of this kind of VLF/LF activities going on in different parts of the globe and we suggest the importance of international collaboration in this seismo-electromagnetic study.展开更多
The ultra-low-frequency (ULF) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake (EQ) prediction. This paper reviews previous convincing evidence on t...The ultra-low-frequency (ULF) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake (EQ) prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before three major EQs. Then, we present further statistical study on the ULF occurrence, our networks of ULF monitoring in different spatial scales in Japan and finally we present several signal processings to identify the seismogenic emissions by showing latest results for recent large EQs.展开更多
The hourly data of the vertical Z and the horizontal H components of 37 ground-based DC-ULF geomagnetic stations are examined during 20 April-12 May 2008. On 9 May 2008, three days before the Wenchuan MS 8.0 shock, an...The hourly data of the vertical Z and the horizontal H components of 37 ground-based DC-ULF geomagnetic stations are examined during 20 April-12 May 2008. On 9 May 2008, three days before the Wenchuan MS 8.0 shock, anomalies-a double low-point and a decreased amplitude-are registered on the curves of the Z component at 25 stations in a large-scale area surrounding the Wenchuan epicentral area. The H component shows none of the double low-point phenomenon but does exhibit a reduced magnitude at the same time. The geomagnetic index Kp is also examined and indicates that the anomalies appear at a solar quiet period. The appearing time shift(Tzs) between the first low-point on May 9 and the minimum point occurring time of May 1-5, 2008 is also checked.The results show that Tzs is on the order of 1-2 hours earlier or later than usual and there is a 2-6 hours’ gap between these two lowpoints. However, there is still a transition area which includes the epicenter where Tzs=0. Variation amplitude examined on vertical Z increases as the distance from the epicenter decreases. An Earth-air-ionosphere model has been employed to investigate a possible mechanism of this phenomenon and positive results have been unexpectedly attained. All these above-related results tend to prove that the variations of the Z and H on May 9, 2008 during the solar quiet period are probably associated with the forthcoming Wenchuan MS 8.0 earthquake.展开更多
There have been published many papers on VLF (very low frequency) characteristics to study seismo-ionospheric perturbations. Usually VLF records (amplitude and/or phase) are used to investigate mainly the temporal evo...There have been published many papers on VLF (very low frequency) characteristics to study seismo-ionospheric perturbations. Usually VLF records (amplitude and/or phase) are used to investigate mainly the temporal evolution of VLF propagation anomalies with special attention to one particular propagation path. The most important advantage of this paper is the simultaneous use of several propagation paths. A succession of earthquakes (EQs) happened in the Kumamoto area in Kyusyu Island;two strong foreshocks with magnitude of 6.5 and 6.4 on 14 April (UT) and the main shock with magnitude 7.3 on 15 April (UT). Because the EQ epicenters are not far from the VLF transmitter (with the call sign of JJI in Miyazaki prefecture), we can utilize simultaneously 8 observing stations of our network all over Japan. Together with the use of theoretical computations based on wave-hop theory, we try to trace both the temporal and spatial evolutions of the ionospheric perturbation associated with this succession of EQs. It is found that the ionospheric perturbation begins to appear about two weeks before the EQs, and this perturbation becomes most developed 5 - 3 days before the main shock. When the perturbation is most disturbed, the maximum change in vertical direction is depletion in the VLF effective ionospheric height of the order of 10 km, and its horizontal scale (or its radius) is about 1000 km. These spatio-temporal changes of the seismo-ionospheric perturbation will be investigated in details in the discus-sion, a comparison has made with the VLF characteristics of the 1995 Kobe with the same magnitude and of the same fault-type, and a brief discussion on the generation mechanism of seismo-ionospheric perturbation is finally made.展开更多
Induction vectors have been extensively calculated using data from 19 Japanese observatories for a dozen years preceding the huge 2011 Tohoku earthquake (EQ). At 6 observatories anomalous variations of induction vecto...Induction vectors have been extensively calculated using data from 19 Japanese observatories for a dozen years preceding the huge 2011 Tohoku earthquake (EQ). At 6 observatories anomalous variations of induction vectors were separated in the years of 2008-2010 that can be identified as middle-term precursors. These observatories are located not at the shortest distance from the EQ epicenter, that is in agreement with the widely known phenomenon of spatial selectivity of EQ precursors. The analysis of horizontal tensors reveals a conductivity anomaly under the central part of the Boso peninsula (at 30 km from Tokyo) with a WNW-ESE strike coinciding both with the Sagami trough strike and the strike of well conducting 3 km thick sediments. A joint analysis of geoelectric and tectonic data leads to a preliminary conclusion that the Boso conductivity anomaly connects two large scale conductors: Pacific sea water and a deep magma reservoir beneath a volcanic belt. Between two so different conductors an unstable transition zone can be expected which should be sensitive to changes of stress. Applying our original processing including two steps analysis and elimination of annual and monthly periods, a short-term two-month-long precursor of bay-like form was successfully separated at the observatory of Kanozan, KNZ (over the Boso anomaly) despite its strong noise. All the results were obtained with advanced multi-windows multi-rr (remote reference) robust programs with a coherency control. Dependence of the results of induction vector calculation on geomagnetic activity was carefully studied, and this dependence is relatively strong when the magnetotelluric field and noise have approximately the same magnitude. But even in this case we could identify the precursor field.展开更多
Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dyn...Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dynamic high-speed interconnections between baseband units(BBUs)and remote radio heads(RRHs)is vital in centralized base station design.Herein,dynamic high-speed switches(HSSs)connecting BBUs and RRHs were designed for a centralized base station architecture.We analyzed the characteristics of actual traffic and introduced a switch traffic model suitable for the super base station architecture.Then,we proposed a data-priority-aware(DPA)scheduling algorithm based on the traffic model.Lastly,we developed the dynamic HSS model based on the OPNET platform and the prototype based on FPGA.Our results show that the DPA achieves close to 100%throughput with lower latency and provides better run-time complexity than iOCF and HE-iSLIP,thereby demonstrating that the proposed switch system can be adopted in centralized base station architectures.展开更多
There have been reported several papers on the ionospheric F region perturbations prior to the 2008 Sichuan earthquake (EQ) (magnitude 8.0), but it seems that very few reports have been published on the characteristic...There have been reported several papers on the ionospheric F region perturbations prior to the 2008 Sichuan earthquake (EQ) (magnitude 8.0), but it seems that very few reports have been published on the characteristics of ground-based ULF (ultra low frequency) magnetic field variations for this EQ. This paper deals with two different aspects of ground-based ULF magnetic field variations: 1) ULF radiation from the lithosphere, and 2) depression of ULF horizontal magnetic field as a signature of lower ionospheric perturbations. ULF data from two Chinese stations [Chengdu (epicentral distance, 80 km) and Xichang (about 300 km away from the EQ epicenter)] are analyzed, with paying attention to the local nighttime period (LT = 22 h to 02 h, UTC = 14 h to 18 h) in order to avoid man-made noise. We have analyzed powers of the horizontal component (H2), vertical component (Z2), polarization as their ratio (Z2/H2), depression of the horizontal component (as an inverse of horizontal magnetic field component power, 1/H2) and δDep as a variation of depression at a particular frequency of 0.01 - 0.02 Hz (10 - 20 mHz). It is then found that there seems no clear signature of lithospheric ULF radiation. Whilst, the most evident fact is the finding of depression of ULF horizontal magnetic field at Chengdu a few days before the Sichuan EQ, which suggests that the lower ionosphere was perturbed before the EQ. The characteristics of the lower ionospheric perturbations are compared with those of upper ionospheric perturbations reported before.展开更多
The ultra-low frequency (ULF) magnetic field data at a station very close to the 2008 Sichuan earthquake (EQ) (on 12 May, 2008;M = 8.0) are extensively studied on the basis of combined statistical and natural time ana...The ultra-low frequency (ULF) magnetic field data at a station very close to the 2008 Sichuan earthquake (EQ) (on 12 May, 2008;M = 8.0) are extensively studied on the basis of combined statistical and natural time analyses. Two effects in ULF are treated: one is the well-known ULF radiation from the lithosphere, and the other is the non-conventional depression of ULF horizontal magnetic field. The simple statistical analysis has yielded: 1) no clear evidence of the presence of precursory ULF radiation, and 2) a significant effect of depression of ULF horizontal field a few days before the EQ (as a signature of ionospheric perturbations). The recently introduced natural time analysis has also been performed in order to study the critical features of the lithosphere and essentially new information has been brought about. The parameter “polarization”, as the ratio of vertical to horizontal components, showed critical features in the time period of 17 - 27 April, about one month to two weeks before the EQ as a signature of lithospheric radiation. Then, the natural time analysis has reconfirmed the presence of ionospheric perturbations a few days before the EQ, together with an additional time window found on 19 - 23 April, about one month before the EQ, exhibiting critical features in the ULF depression.展开更多
Fast-Than-Nyquist (FTN) transmission is a promising method to improve the spectrum efficiency for future wireless communication systems. However, this benefit of FTN is at the price of inducing the inter-symbol interf...Fast-Than-Nyquist (FTN) transmission is a promising method to improve the spectrum efficiency for future wireless communication systems. However, this benefit of FTN is at the price of inducing the inter-symbol interference (ISI), which increases the complexity of the receiver. In this paper, a circulated block transmission scheme for FTN signaling, i.e. CB-FTN system is proposed. The detail implementation structure of CB-FTN transceiver is presented, in which the ISI caused by FTN transmission is canceled by the frequency-domain equalization (FDE), and the inter-block interference (IBI) caused by the multi-path channel is overcome by the cyclic-prefix. The postprocessing signal to noise ratio (pSNR) is analyzed for the CB-FTN receiver with zero-forcing FDE in AWGN channel, which is verified by the simulation results. Moreover, the BER performances and computational complexity of CB-FTN system are compared with the existed scheme.展开更多
The relative importance of magnitude and depth of an earthquake (EQ) in the generation of seismo-ionospheric perturbations at middle latitudes is investigated by using the EQs near the propagation path from the Japane...The relative importance of magnitude and depth of an earthquake (EQ) in the generation of seismo-ionospheric perturbations at middle latitudes is investigated by using the EQs near the propagation path from the Japanese LF transmitter, JJY (at Fukushima) to a receiving station at Petropavsk-Kamchatsky (PTK) in Russia during a three-year period of 2005-2007. It is then found that the depth (down to 100km) is an extremely unimportant factor as compared with the magnitude in inducing seismo-ionospheric perturbations at middle latitudes. This result for sea EQs in the Izu-Bonin and Kurile-Kamchatka arcs is found to be in sharp contrast with our previous result for Japanese EQs mainly of the fault-type. We try to interpret this difference in the context of the lithosphere-atmosphere-ionosphere coupling mechanism.展开更多
The Kumamoto area of Kyusyu Island was attacked by a series of large earthquakes (EQs) in April, 2016. The first two foreshocks had the magnitudes of 6.5 and 6.4, and about 1 day later there was the main shock on 15 A...The Kumamoto area of Kyusyu Island was attacked by a series of large earthquakes (EQs) in April, 2016. The first two foreshocks had the magnitudes of 6.5 and 6.4, and about 1 day later there was the main shock on 15 April (UT) with magnitude 7.3. These are fault-type EQs, and so we would expect a variety of electromagnetic precursors to these EQs because we had detected different phenomena for the 1995 Kobe EQ, same fault-type EQ. As for the lithospheric effect, the ULF data at Kanoya observatory (about 150 km from the EQ epicenters) are used, but the simple statistical analysis could not provide us with any clear evidence of ULF radiation from the lithosphere. However, our conventional analyses indicated clear signatures in the atmosphere as ULF/ELF impulsive emissions and also in the ionosphere as observed by means of VLF propagation anomalies and ULF depression. ULF/ELF radiation appeared on 8-11 April (in UT) (maximum on 10 and 11 April (UT)), while ULF depression took place on 8 and 10 April (in UT), so that both atmospheric radiation and ionospheric perturbation took place nearly during the same time period.展开更多
We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The ...We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.展开更多
There has been enormous progress in the field of electromagnetic phenomena associated with earthquakes (EQs) and EQ prediction during the last three decades, and it is recently agreed that electromagnetic effects do a...There has been enormous progress in the field of electromagnetic phenomena associated with earthquakes (EQs) and EQ prediction during the last three decades, and it is recently agreed that electromagnetic effects do appear prior to an EQ. A few phenomena are well recognized as being statistically correlated with EQs as promising candidates for short-term EQ predictors: the first is ionospheric perturbation not only in the lower ionosphere as seen by subionospheric VLF (very low frequency, 3 kHz f 30 kHz)/LF (low frequency, 30 kHz f 300 kHz) propagation but also in the upper F region as detected by ionosondes, TEC (total electron content) observations, satellite observations, etc, and the second is DC earth current known as SES (Seismic electric signal). In addition to the above two physical phenomena, this review highlights the following four physical wave phenomena in ULF (ultra low frequency, frequency Hz)/ELF (extremely low frequency, 3 Hz frequency 3 kHz) ranges, including 1) ULF lithospheric radiation (i.e., direct radiation from the lithosphere), 2) ULF magnetic field depression effect (as an indicator of lower ionospheric perturbation), 3) ULF/ELF electromagnetic radiation (radiation in the atmosphere), and 4) Schumann resonance (SR) anomalies (as an indicator of the perturbations in the lower ionosphere and stratosphere). For each physical item, we will repeat the essential points and also discuss recent advances and future perspectives. For the purpose of future real EQ prediction practice, we pay attention to the statistical correlation of each phenomenon with EQs, and its predictability in terms of probability gain. Of course, all of those effects are recommended as plausible candidates for short-term EQ prediction, and they can be physically explained in terms of the unified concept of the lithosphere-atmosphere-ionosphere coupling (LAIC) process, so a brief description of this coupling has been carried out by using these four physical parameters though the mechanism of each phenomenon is still poorly understood. In conclusion, we have to emphasize the importance of more statistical studies for more abundant datasets sometimes with the use of AI (artificial intelligence) techniques, more case studies for huge (M greater than 7) EQ events, recommendation of critical analyses, and finally multi-parameters observation (even though it is tough work).展开更多
A statistical study on the basis of one-year data of 2014 has been performed in order to find whether abnormal animal behavior is related with seismic activity and also whether the ULF (Ultra Low Frequency) electromag...A statistical study on the basis of one-year data of 2014 has been performed in order to find whether abnormal animal behavior is related with seismic activity and also whether the ULF (Ultra Low Frequency) electromagnetic radiation might be a possible sensory mechanism of abnormal animal behavior. Abnormal animal behavior has been studied with the use of digitally recorded milk yield of cows at Ibaraki Prefecture Livestock Station, and the ULF magnetic field changes have been studied with the data at a magnetic observatory of Kakioka. As the result of correlation analyses, clear responses are observed for both the milk yield of cows and ULF magnetic field changes (both ULF radiation (ULF emissions from the lithosphere) and ULF depression (as an indicator of lower ionospheric perturbations)) for most powerful and not distant earthquakes (EQs) with magnitude > 6, that is, the milk yield of cows is found to exhibit a conspicuous depletion about 17 - 18 days before an EQ, though the correlation coefficient is not so big. Another important objective in this paper is to identify that ULF radiation is the main agent of abnormal behavior so that we have compared the temporal evolutions of milk yield of cows, ULF radiation and ULF depression for three major EQs. As a result, it is found that ULF radiation happens, at least, during the periods of abnormal depletion of milk yield of cows.展开更多
After the 2011 Tohoku earthquake (EQ), there have been numerous aftershocks in the eastern and Pacific Ocean of Japan, but EQs are still rare in the western part of Japan. In this situation a relatively large (magnitu...After the 2011 Tohoku earthquake (EQ), there have been numerous aftershocks in the eastern and Pacific Ocean of Japan, but EQs are still rare in the western part of Japan. In this situation a relatively large (magnitude (M) ~6) EQ happened on April 12 (UT), 2013 at a place close to the former 1995 Kobe EQ (M~7), so we have tried to find whether there existed any precursors to this EQ, especially abnormal animal behavior (milk yield of cows), observed at Kagawa, Shikoku, near the EQ epicenter. The milk yield of cows has been continuously monitored at Kagawa, and it is found that the milk yield exhibited an abnormal depletion about 10 days before the EQ. This behavior has been extensively compared with the former electromagnetic precursors (ULF radiation, ionos-pheric perturbation). This leads to the discussion on the sensory mechanism of unusual behavior of mild yield of cows, and it may be suggested that ULF radiation among different electromagnetic precursors is a mostly likely driver, at least, for this EQ.展开更多
文摘Just as Dickens wrote,it is the best of times,it is the worst of times.Ever increasing traffic demands will bring us into the era of 5G.Vast of unprecedented or even unanticipated fancy wireless applications will definitely change our life.
文摘There have been reports for many years that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs) attracts a lot of attention as a very promising candidate for short-term EQ prediction. In this review we present a possible use of VLF/LF (very low frequency (3-30 kHz)/low frequency (30-300 kHz)) radio sounding of seismo-ionospheric perturbations. In order to avoid the overlapping with my own previous reviews, we first show some pioneering results for the Kobe EQ and we try to present the latest results including the statistical evidence on the correlation between the VLF/LF propagation anomalies (ionospheric perturbations) and EQs (especially with large magnitude and with shallow depth), medium-distance (6-8 Mm) propagation anomalies, the fluctuation spectra of subionospheric VLF/LF data (the effect of atmospheric gravity waves, the effect of Earth's tides, etc.), and the mechanism of lithosphere-atmosphere-ionosphere coupling. Finally, we indicate the present situation of this kind of VLF/LF activities going on in different parts of the globe and we suggest the importance of international collaboration in this seismo-electromagnetic study.
基金A considerable part of the works was carried out in the frameworks of Frontier Projects by NASDA and RIKENNICT(National Institute of Information and Communications Technology) (R and D promotion scheme funding international joint research) for its financial support
文摘The ultra-low-frequency (ULF) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake (EQ) prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before three major EQs. Then, we present further statistical study on the ULF occurrence, our networks of ULF monitoring in different spatial scales in Japan and finally we present several signal processings to identify the seismogenic emissions by showing latest results for recent large EQs.
基金supported by NSFC (National Natural Science Foundation of China) under grant agreement No.41774084National Key R & D Program of China under grant No.2018YFC 1503506
文摘The hourly data of the vertical Z and the horizontal H components of 37 ground-based DC-ULF geomagnetic stations are examined during 20 April-12 May 2008. On 9 May 2008, three days before the Wenchuan MS 8.0 shock, anomalies-a double low-point and a decreased amplitude-are registered on the curves of the Z component at 25 stations in a large-scale area surrounding the Wenchuan epicentral area. The H component shows none of the double low-point phenomenon but does exhibit a reduced magnitude at the same time. The geomagnetic index Kp is also examined and indicates that the anomalies appear at a solar quiet period. The appearing time shift(Tzs) between the first low-point on May 9 and the minimum point occurring time of May 1-5, 2008 is also checked.The results show that Tzs is on the order of 1-2 hours earlier or later than usual and there is a 2-6 hours’ gap between these two lowpoints. However, there is still a transition area which includes the epicenter where Tzs=0. Variation amplitude examined on vertical Z increases as the distance from the epicenter decreases. An Earth-air-ionosphere model has been employed to investigate a possible mechanism of this phenomenon and positive results have been unexpectedly attained. All these above-related results tend to prove that the variations of the Z and H on May 9, 2008 during the solar quiet period are probably associated with the forthcoming Wenchuan MS 8.0 earthquake.
文摘There have been published many papers on VLF (very low frequency) characteristics to study seismo-ionospheric perturbations. Usually VLF records (amplitude and/or phase) are used to investigate mainly the temporal evolution of VLF propagation anomalies with special attention to one particular propagation path. The most important advantage of this paper is the simultaneous use of several propagation paths. A succession of earthquakes (EQs) happened in the Kumamoto area in Kyusyu Island;two strong foreshocks with magnitude of 6.5 and 6.4 on 14 April (UT) and the main shock with magnitude 7.3 on 15 April (UT). Because the EQ epicenters are not far from the VLF transmitter (with the call sign of JJI in Miyazaki prefecture), we can utilize simultaneously 8 observing stations of our network all over Japan. Together with the use of theoretical computations based on wave-hop theory, we try to trace both the temporal and spatial evolutions of the ionospheric perturbation associated with this succession of EQs. It is found that the ionospheric perturbation begins to appear about two weeks before the EQs, and this perturbation becomes most developed 5 - 3 days before the main shock. When the perturbation is most disturbed, the maximum change in vertical direction is depletion in the VLF effective ionospheric height of the order of 10 km, and its horizontal scale (or its radius) is about 1000 km. These spatio-temporal changes of the seismo-ionospheric perturbation will be investigated in details in the discus-sion, a comparison has made with the VLF characteristics of the 1995 Kobe with the same magnitude and of the same fault-type, and a brief discussion on the generation mechanism of seismo-ionospheric perturbation is finally made.
文摘Induction vectors have been extensively calculated using data from 19 Japanese observatories for a dozen years preceding the huge 2011 Tohoku earthquake (EQ). At 6 observatories anomalous variations of induction vectors were separated in the years of 2008-2010 that can be identified as middle-term precursors. These observatories are located not at the shortest distance from the EQ epicenter, that is in agreement with the widely known phenomenon of spatial selectivity of EQ precursors. The analysis of horizontal tensors reveals a conductivity anomaly under the central part of the Boso peninsula (at 30 km from Tokyo) with a WNW-ESE strike coinciding both with the Sagami trough strike and the strike of well conducting 3 km thick sediments. A joint analysis of geoelectric and tectonic data leads to a preliminary conclusion that the Boso conductivity anomaly connects two large scale conductors: Pacific sea water and a deep magma reservoir beneath a volcanic belt. Between two so different conductors an unstable transition zone can be expected which should be sensitive to changes of stress. Applying our original processing including two steps analysis and elimination of annual and monthly periods, a short-term two-month-long precursor of bay-like form was successfully separated at the observatory of Kanozan, KNZ (over the Boso anomaly) despite its strong noise. All the results were obtained with advanced multi-windows multi-rr (remote reference) robust programs with a coherency control. Dependence of the results of induction vector calculation on geomagnetic activity was carefully studied, and this dependence is relatively strong when the magnetotelluric field and noise have approximately the same magnitude. But even in this case we could identify the precursor field.
基金the key project of the National Science and Technology Major Project(Grant No.2018ZX03001017)the project of the CAS engineering laboratory for intelligent agricultural machinery equipment(Grant No.GC201907-02).
文摘Novel centralized base station architectures integrating computation and communication functionalities have become important for the development of future mobile communication networks.Therefore,the development of dynamic high-speed interconnections between baseband units(BBUs)and remote radio heads(RRHs)is vital in centralized base station design.Herein,dynamic high-speed switches(HSSs)connecting BBUs and RRHs were designed for a centralized base station architecture.We analyzed the characteristics of actual traffic and introduced a switch traffic model suitable for the super base station architecture.Then,we proposed a data-priority-aware(DPA)scheduling algorithm based on the traffic model.Lastly,we developed the dynamic HSS model based on the OPNET platform and the prototype based on FPGA.Our results show that the DPA achieves close to 100%throughput with lower latency and provides better run-time complexity than iOCF and HE-iSLIP,thereby demonstrating that the proposed switch system can be adopted in centralized base station architectures.
文摘There have been reported several papers on the ionospheric F region perturbations prior to the 2008 Sichuan earthquake (EQ) (magnitude 8.0), but it seems that very few reports have been published on the characteristics of ground-based ULF (ultra low frequency) magnetic field variations for this EQ. This paper deals with two different aspects of ground-based ULF magnetic field variations: 1) ULF radiation from the lithosphere, and 2) depression of ULF horizontal magnetic field as a signature of lower ionospheric perturbations. ULF data from two Chinese stations [Chengdu (epicentral distance, 80 km) and Xichang (about 300 km away from the EQ epicenter)] are analyzed, with paying attention to the local nighttime period (LT = 22 h to 02 h, UTC = 14 h to 18 h) in order to avoid man-made noise. We have analyzed powers of the horizontal component (H2), vertical component (Z2), polarization as their ratio (Z2/H2), depression of the horizontal component (as an inverse of horizontal magnetic field component power, 1/H2) and δDep as a variation of depression at a particular frequency of 0.01 - 0.02 Hz (10 - 20 mHz). It is then found that there seems no clear signature of lithospheric ULF radiation. Whilst, the most evident fact is the finding of depression of ULF horizontal magnetic field at Chengdu a few days before the Sichuan EQ, which suggests that the lower ionosphere was perturbed before the EQ. The characteristics of the lower ionospheric perturbations are compared with those of upper ionospheric perturbations reported before.
文摘The ultra-low frequency (ULF) magnetic field data at a station very close to the 2008 Sichuan earthquake (EQ) (on 12 May, 2008;M = 8.0) are extensively studied on the basis of combined statistical and natural time analyses. Two effects in ULF are treated: one is the well-known ULF radiation from the lithosphere, and the other is the non-conventional depression of ULF horizontal magnetic field. The simple statistical analysis has yielded: 1) no clear evidence of the presence of precursory ULF radiation, and 2) a significant effect of depression of ULF horizontal field a few days before the EQ (as a signature of ionospheric perturbations). The recently introduced natural time analysis has also been performed in order to study the critical features of the lithosphere and essentially new information has been brought about. The parameter “polarization”, as the ratio of vertical to horizontal components, showed critical features in the time period of 17 - 27 April, about one month to two weeks before the EQ as a signature of lithospheric radiation. Then, the natural time analysis has reconfirmed the presence of ionospheric perturbations a few days before the EQ, together with an additional time window found on 19 - 23 April, about one month before the EQ, exhibiting critical features in the ULF depression.
文摘Fast-Than-Nyquist (FTN) transmission is a promising method to improve the spectrum efficiency for future wireless communication systems. However, this benefit of FTN is at the price of inducing the inter-symbol interference (ISI), which increases the complexity of the receiver. In this paper, a circulated block transmission scheme for FTN signaling, i.e. CB-FTN system is proposed. The detail implementation structure of CB-FTN transceiver is presented, in which the ISI caused by FTN transmission is canceled by the frequency-domain equalization (FDE), and the inter-block interference (IBI) caused by the multi-path channel is overcome by the cyclic-prefix. The postprocessing signal to noise ratio (pSNR) is analyzed for the CB-FTN receiver with zero-forcing FDE in AWGN channel, which is verified by the simulation results. Moreover, the BER performances and computational complexity of CB-FTN system are compared with the existed scheme.
文摘The relative importance of magnitude and depth of an earthquake (EQ) in the generation of seismo-ionospheric perturbations at middle latitudes is investigated by using the EQs near the propagation path from the Japanese LF transmitter, JJY (at Fukushima) to a receiving station at Petropavsk-Kamchatsky (PTK) in Russia during a three-year period of 2005-2007. It is then found that the depth (down to 100km) is an extremely unimportant factor as compared with the magnitude in inducing seismo-ionospheric perturbations at middle latitudes. This result for sea EQs in the Izu-Bonin and Kurile-Kamchatka arcs is found to be in sharp contrast with our previous result for Japanese EQs mainly of the fault-type. We try to interpret this difference in the context of the lithosphere-atmosphere-ionosphere coupling mechanism.
文摘The Kumamoto area of Kyusyu Island was attacked by a series of large earthquakes (EQs) in April, 2016. The first two foreshocks had the magnitudes of 6.5 and 6.4, and about 1 day later there was the main shock on 15 April (UT) with magnitude 7.3. These are fault-type EQs, and so we would expect a variety of electromagnetic precursors to these EQs because we had detected different phenomena for the 1995 Kobe EQ, same fault-type EQ. As for the lithospheric effect, the ULF data at Kanoya observatory (about 150 km from the EQ epicenters) are used, but the simple statistical analysis could not provide us with any clear evidence of ULF radiation from the lithosphere. However, our conventional analyses indicated clear signatures in the atmosphere as ULF/ELF impulsive emissions and also in the ionosphere as observed by means of VLF propagation anomalies and ULF depression. ULF/ELF radiation appeared on 8-11 April (in UT) (maximum on 10 and 11 April (UT)), while ULF depression took place on 8 and 10 April (in UT), so that both atmospheric radiation and ionospheric perturbation took place nearly during the same time period.
文摘We suggest a possible explanation of the influence of pre-seismic activity on the registration rate of natural ELF(extremely low frequency)/VLF(very low frequency) pulses and the changes of their characteristics. The main idea is as follows. The distribution of the electric field around a thundercloud depends on the conductivity profile of the atmosphere. Quasi-static electric fields of a thundercloud decrease in those tropospheric regions where an increase of air conductivity is generated by pre-seismic activities due to emanation of radioactive gas and water into the lower atmosphere. The electric field becomes reduced in the lower troposphere, and the probability decreases of the cloud-to-ground (CG) strokes in such “contaminated” areas. Simultaneously, the electric field grows inside and above the thunderclouds, and hence, we anticipate a growth in the number of horizontal and tilted inter-cloud (or intra-cloud) (both termed as IC discharges) strokes. Spatial orientation of lightning strokes reduces vertical projection of their individual amplitudes, while the rate (median number strokes per a unit time) of discharges grows. We demonstrate that channel tilt of strokes modifies the spectral content of ELF/VLF radio noise and changes the rate of detected pulses during the earthquake preparation phase.
文摘There has been enormous progress in the field of electromagnetic phenomena associated with earthquakes (EQs) and EQ prediction during the last three decades, and it is recently agreed that electromagnetic effects do appear prior to an EQ. A few phenomena are well recognized as being statistically correlated with EQs as promising candidates for short-term EQ predictors: the first is ionospheric perturbation not only in the lower ionosphere as seen by subionospheric VLF (very low frequency, 3 kHz f 30 kHz)/LF (low frequency, 30 kHz f 300 kHz) propagation but also in the upper F region as detected by ionosondes, TEC (total electron content) observations, satellite observations, etc, and the second is DC earth current known as SES (Seismic electric signal). In addition to the above two physical phenomena, this review highlights the following four physical wave phenomena in ULF (ultra low frequency, frequency Hz)/ELF (extremely low frequency, 3 Hz frequency 3 kHz) ranges, including 1) ULF lithospheric radiation (i.e., direct radiation from the lithosphere), 2) ULF magnetic field depression effect (as an indicator of lower ionospheric perturbation), 3) ULF/ELF electromagnetic radiation (radiation in the atmosphere), and 4) Schumann resonance (SR) anomalies (as an indicator of the perturbations in the lower ionosphere and stratosphere). For each physical item, we will repeat the essential points and also discuss recent advances and future perspectives. For the purpose of future real EQ prediction practice, we pay attention to the statistical correlation of each phenomenon with EQs, and its predictability in terms of probability gain. Of course, all of those effects are recommended as plausible candidates for short-term EQ prediction, and they can be physically explained in terms of the unified concept of the lithosphere-atmosphere-ionosphere coupling (LAIC) process, so a brief description of this coupling has been carried out by using these four physical parameters though the mechanism of each phenomenon is still poorly understood. In conclusion, we have to emphasize the importance of more statistical studies for more abundant datasets sometimes with the use of AI (artificial intelligence) techniques, more case studies for huge (M greater than 7) EQ events, recommendation of critical analyses, and finally multi-parameters observation (even though it is tough work).
文摘A statistical study on the basis of one-year data of 2014 has been performed in order to find whether abnormal animal behavior is related with seismic activity and also whether the ULF (Ultra Low Frequency) electromagnetic radiation might be a possible sensory mechanism of abnormal animal behavior. Abnormal animal behavior has been studied with the use of digitally recorded milk yield of cows at Ibaraki Prefecture Livestock Station, and the ULF magnetic field changes have been studied with the data at a magnetic observatory of Kakioka. As the result of correlation analyses, clear responses are observed for both the milk yield of cows and ULF magnetic field changes (both ULF radiation (ULF emissions from the lithosphere) and ULF depression (as an indicator of lower ionospheric perturbations)) for most powerful and not distant earthquakes (EQs) with magnitude > 6, that is, the milk yield of cows is found to exhibit a conspicuous depletion about 17 - 18 days before an EQ, though the correlation coefficient is not so big. Another important objective in this paper is to identify that ULF radiation is the main agent of abnormal behavior so that we have compared the temporal evolutions of milk yield of cows, ULF radiation and ULF depression for three major EQs. As a result, it is found that ULF radiation happens, at least, during the periods of abnormal depletion of milk yield of cows.
文摘After the 2011 Tohoku earthquake (EQ), there have been numerous aftershocks in the eastern and Pacific Ocean of Japan, but EQs are still rare in the western part of Japan. In this situation a relatively large (magnitude (M) ~6) EQ happened on April 12 (UT), 2013 at a place close to the former 1995 Kobe EQ (M~7), so we have tried to find whether there existed any precursors to this EQ, especially abnormal animal behavior (milk yield of cows), observed at Kagawa, Shikoku, near the EQ epicenter. The milk yield of cows has been continuously monitored at Kagawa, and it is found that the milk yield exhibited an abnormal depletion about 10 days before the EQ. This behavior has been extensively compared with the former electromagnetic precursors (ULF radiation, ionos-pheric perturbation). This leads to the discussion on the sensory mechanism of unusual behavior of mild yield of cows, and it may be suggested that ULF radiation among different electromagnetic precursors is a mostly likely driver, at least, for this EQ.