期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Remote Control System of 37 mm Double Tube Antiaircraft Gun for Hunan Weather Modification 被引量:1
1
作者 Li Qiong Zhang Zhongbo +2 位作者 Li Zuxian Zhang Yongxiang Zhou Sheng 《Meteorological and Environmental Research》 CAS 2017年第2期33-36,共4页
Hunan Weather Modification Center and Suizhou Dafang Precision Electromechanical Engineering Co.,Ltd. of Hubei commonly transformed and installed 83 double tube antiaircraft guns( 37 mm) of Hunan Province in order to ... Hunan Weather Modification Center and Suizhou Dafang Precision Electromechanical Engineering Co.,Ltd. of Hubei commonly transformed and installed 83 double tube antiaircraft guns( 37 mm) of Hunan Province in order to realize remote control of computer. After transformation,loading capacity of ammunition feeding machine became large,which could shorten the time of filling shells in the case of short airspace time;one shell launch volume was more,which could improve hail suppression effect; the degree of automation was greatly improved,which could save manpower by more than 50%. It fully embodied the modernization level of Hunan weather modification operation. 展开更多
关键词 37 MM DOUBLE TUBE antiaircraft GUN REMOTE control Automation China
在线阅读 下载PDF
Quantitative Precipitation Estimation Using X-band Phased Array Weather Radar
2
作者 Shaoyu HOU Xuejiao CHEN +1 位作者 Chunnan SUO Xiangfeng HU 《Meteorological and Environmental Research》 2024年第4期29-31,共3页
This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Are... This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques. 展开更多
关键词 X-band phased array radar Quantitative precipitation estimation
在线阅读 下载PDF
Enhanced Nowcasting Through a Novel Radar Echo Extrapolation Algorithm:Integrating Recurrent Convolutional Neural Networks with Optical Flow Methods
3
作者 Xugang LI Zhiyuan SHU +4 位作者 Shaoyu HOU Feng LV Wuyi WANG Rong MAI Haipeng ZHU 《Meteorological and Environmental Research》 2025年第3期51-56,共6页
This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Da... This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Dataset of the Guangdong-Hong Kong-Macao Greater Bay Area,the performance of OF-ConvGRU was evaluated against OF and ConvGRU methods.Threat Score(TS)and Bias Score(BIAS)were employed to assess extrapolation accuracy across various echo intensities(20-50 dBz)and weather phenomena.Results demonstrate that OF-ConvGRU significantly enhances prediction accuracy for moderate-intensity echoes(30-40 dBz),effectively combining OF s precise motion estimation with ConvGRU s nonlinear learning capabilities.However,challenges persist in low-intensity(20 dBz)and high-intensity(50 dBz)echo predictions.The study reveals distinct advantages of each method in specific contexts,highlighting the importance of multi-method approaches in operational nowcasting.OF-ConvGRU shows promise in balancing short-term accuracy with long-term stability,particularly for complex weather systems. 展开更多
关键词 Radar echo extrapolation NOWCASTING Optical flow Deep learning
在线阅读 下载PDF
Airborne Investigation of Riming:Cloud and Precipitation Microphysics within a Weak Convective System in North China
4
作者 Xiangfeng HU Hao HUANG +9 位作者 Shaoyu HOU Kun ZHAO Chuanfeng ZHAO Yinghui LU Jiefang YANG Rong ZHANG Delong ZHAO Weiguo LIU Dan ZHANG Haixia XIAO 《Advances in Atmospheric Sciences》 2025年第3期515-526,共12页
The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central an... The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central and southern regions of North China on 22 May 2017.The microphysical structural characteristics and processes near the embedded convection core and in the stratiform cloud are analyzed comparatively.Particular attention is given to the effect of riming on the microphysical properties near the upper boundary of the melting layer and to the factors influencing riming efficiency.The collaborative observations reveal that the particle size distributions observed near the convection core and in the stratiform region are close,while the particle properties like habit and riming degree are quite different.Above the melting layer,larger plate-like ice particles and supercooled water droplets(D>50μm)are more abundant near the convective core,leading to higher collision efficiencies between ice particles and supercooled water droplets.Larger fluctuation amplitudes of vertical airflow near the convective core also contribute to the increased riming activity and the formation of more heavily rimed particles,such as graupel.Furthermore,in situ measurements from airborne probes also revealed that above the melting layer,the riming process involves two stages:the mass of snow crystals grows as supercooled droplets merge internally without changing size,followed by external freezing that significantly enlarges the crystals. 展开更多
关键词 RIMING collision efficiency airflow fluctuation particle habit aircraft measurement
在线阅读 下载PDF
Analysis of atmospheric pollutant characteristics and regional transport in coastal area along the East China Sea
5
作者 Yangzhou Wu Dantong Liu +5 位作者 Honghui Xu Meng Shan Siyuan Li Ping Tian Kang Hu Junfeng Wang 《Journal of Environmental Sciences》 2025年第10期225-238,共14页
PM_(2.5) and black carbon(BC)are important air pollutants impacting radiation balance,air quality,health,and ecosystems.Ozone(O_(3))levels are increasing despite decreases in other pollutants,posing a challenge for po... PM_(2.5) and black carbon(BC)are important air pollutants impacting radiation balance,air quality,health,and ecosystems.Ozone(O_(3))levels are increasing despite decreases in other pollutants,posing a challenge for pollution control,especially in coastal cities like Zhoushan,where the monsoonal climate can exacerbate PM_(2.5) and ozone pollution.This study conducted continuous online measurements of major atmospheric pollutants in Zhoushan,Zhejiang Province,in 2020.The results indicate that the highest contribution from local air masses in Zhoushan is observed in spring,accounting for 17.7%,while the greatest average contribution from northern Zhejiang Province,Jiangsu Province,and Shanghai occurs in winter,at 18.5%.Pollutant concentrationswere seasonally variable,with PM_(2.5),BC,and sulfur dioxide concentrations 56.6%,36%,and 58.2%higher in the cold season compared to the warm season.The O_(3) in spring is approximately 50%higher than that in summer.Ship emissions significantly contributed to BC,nitrogen oxides(NO_(x)),and carbon monoxide in Zhoushan.In spring,PM_(2.5) sources included photochemical processes and northern air mass transport,while in winter,PM_(2.5) was due to regional transport.The inhibitory effect of PM_(2.5) on O_(3) formation in the Zhoushan area is relatively weak.Reducing NO_(x) emissions may increase O_(3),emphasizing the need for volatile organic compounds monitoring and regional control measures to improve air quality and ensure sustainable development in Zhoushan. 展开更多
关键词 Coastal city PM_(2.5) OZONE Black carbon Ship emission Seasonal variation
原文传递
The digital diagrams analysis and forecast of sandstorm weather 被引量:1
6
作者 Ding Jianfang Liu Lei 《Engineering Sciences》 EI 2010年第2期49-55,共7页
The strong sandstorm weather process analysis has been done with the information digital diagrams method and times extended observation information on 23rd May,2004 in Gansu Province. The research results reveal the u... The strong sandstorm weather process analysis has been done with the information digital diagrams method and times extended observation information on 23rd May,2004 in Gansu Province. The research results reveal the unique mechanism structure of sandstorm disaster weather and the signification of irregular information,approve that the region digital diagrams has the capability to forecast the character and intension of transition disaster weather,and explain certainly that the meteorological problem is transformation problem of evolvement science. 展开更多
关键词 SANDSTORM information digital diagrams tumble swirl process
在线阅读 下载PDF
Microphysical Characteristics of Precipitation during Pre-monsoon,Monsoon, and Post-monsoon Periods over the South China Sea 被引量:9
7
作者 Qingwei ZENG Yun ZHANG +5 位作者 Hengchi LEI Yanqiong XIE Taichang GAO Lifeng ZHANG Chunming WANG Yanbin HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第10期1103-1120,共18页
Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is d... Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is divided into premonsoon, monsoon, and post-monsoon periods based on the different large-scale circumstances. In addition to disdrometer data, sounding observation, FY-2E satellite, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), and NCEP reanalysis datasets are used to illustrate the dynamical and microphysical characteristics associated with the rainfall in different periods. Significant variations have been observed in respect of raindrops among the three periods. Intercomparison reveals that small drops (D < 1 mm) are prevalent during pre-monsoon precipitation, whereas medium drops (1?3 mm) are predominant in monsoon precipitation. Overall, the post-monsoon precipitation is characterized by the least concentration of raindrops among the three periods. But, several large raindrops could also occur due to severe convective precipitation events in this period. Classification of the precipitation into stratiform and convective regimes shows that the lg(Nw) value of convective rainfall is the largest (smallest) in the pre-monsoon (post-monsoon) period, whereas the Dm value is the smallest (largest) in the pre-monsoon (post-monsoon) period. An inversion relationship between the coefficient A and the exponential b of the Z?R relationships for precipitation during the three periods is found. Empirical relations between Dm and the radar reflectivity factors at Ku and Ka bands are also derived to improve the rainfall retrieval algorithms over the SCS. Furthermore, the possible causative mechanisms for the significant RSD variability in different periods are also discussed with respect to warm and cold rain processes, raindrop evaporation, convective activities, and other meteorological factors. 展开更多
关键词 PRECIPITATION RAINDROP size distribution South China Sea MONSOON period STRATIFORM and convective cloud
在线阅读 下载PDF
Analysis of Pseudomomentum Wave-Activity Density in a Heavy Rainfall Event in East China 被引量:1
8
作者 RAN Ling-Kun HAO Shou-Chang QI Yan-Bin 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第1期42-48,共7页
Taking into account moisture in virtue of general potential temperature,the author derive a three-dimensional(3D) pseudomomentum wave-activity relation for the moist atmosphere from the primitive equations in Cartesia... Taking into account moisture in virtue of general potential temperature,the author derive a three-dimensional(3D) pseudomomentum wave-activity relation for the moist atmosphere from the primitive equations in Cartesian coordinates using the Momentum-Casimir method.Since the wave-activity relation is constructed in an ageostrophic and non-hydrostatic dynamical framework,it may be applicable to diagnosing the evolution and propagation of mesoscale systems leading to heavy rainfall.The theoretical analysis shows that,besides the local change of wave-activity flux divergence and source or sink,the wave-activity relation includes two additional forcing terms.The first is the zonal gradient of difference between general potential temperature and potential temperature perturbations,and the second is the covariance of the solenoid and gradient of water vapor,denoting the direct influence of moisture on wave-activity density.The wave-activity density was applied to a heavy precipitation event occurring in the Jianghuai region of China.The calculation showed that the wave-activity density was consistent with 6-h accumulated precipitation observations,in terms of both spatial distribution and temporal tendency.This suggested that the disturbance represented by wave-activity density was closely related to the heavy precipitation.Although the wave-activity flux divergence and the covariance of the solenoid and gradient of water vapor made the primary contribution to the local change of wave-activity density,the covariance was more remarkable.The zonal gradient of difference between general potential temperature and potential temperature perturbations made a weaker contribution to the waveactivity density. 展开更多
关键词 pseudomomentum wave-activity density wave-activity flux wave-basic flow interaction heavy precipitation event
在线阅读 下载PDF
Satellite Retrieval of a Strong Hailstorm Process 被引量:1
9
作者 LIU Guihua YU Xing DAI Jin 《Atmospheric and Oceanic Science Letters》 2009年第2期103-107,共5页
A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in ... A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7 μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and develop-ment are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth. 展开更多
关键词 satellite retrieval hail cloud microphysical process T-re relation
在线阅读 下载PDF
Revisiting the size of nonspherical particles recorded by optical array probes with a new method based on the convex hull 被引量:1
10
作者 Rong Zhang Xu Zhou +5 位作者 Hongyu Li Hanchao Li Lei Wei Yang Gao Qiang Xia Xiangyu Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第3期1-5,共5页
In recent years,the Cloud Imaging Probe(CIP)and Precipitation Imaging Probe(PIP)produced by Droplet Measurement Technologies(DMT)have been introduced by a number of meteorological research and operation centers in Chi... In recent years,the Cloud Imaging Probe(CIP)and Precipitation Imaging Probe(PIP)produced by Droplet Measurement Technologies(DMT)have been introduced by a number of meteorological research and operation centers in China.The supporting software provided by DMT,i.e.,PADS(Particle Analysis and Display System),cannot output detailed information on each individual particle,which definitely limits the in-depth utilization of cloud and precipitation particle image data in China.In this paper,particle-by-particle information was extracted by decompressing the CIP and PIP original particle image data,based on which a new definition of the dimension for nonspherical particles is proposed by using the area of the convex hull enclosing a particle to obtain the equivalent diameter of a circle with equal area.Based on the data detected during one flight in Inner Mongolia,the particle size distribution obtained using the new particle size definition and that used by the other four existing definitions are compared.The results show that the particle number concentration calculated using different particle size definitions can vary by up to an order of magnitude.The result obtained based on the new particle size definition is closest to that calculated with the area-equivalent diameter definition. 展开更多
关键词 Cloud and precipitation particles Particle image Particle size Particle size distribution
在线阅读 下载PDF
Microphysical characteristics of precipitating cumulus cloud based on airborne Ka-band cloud radar and droplet measurements 被引量:1
11
作者 Lei Wei Mengyu Huang +6 位作者 Rong Zhang Yuhuan Lü Tuanjie Hou Hengchi Lei Delong Zhao Wei Zhou Yuan Fu 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第2期65-70,共6页
Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The c... Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets. 展开更多
关键词 Airplane observation Microphysical processes Ka-band cloud radar CUMULUS
在线阅读 下载PDF
Characteristics of Cloud-to-ground Lightning during a Squall Line Process outside of the Subtropical High
12
作者 Zou Qin Xie Yiran +2 位作者 Xu Yingjie Liu Xuetao Zhang Tengfei 《Meteorological and Environmental Research》 CAS 2017年第5期25-29,36,共6页
Based on the monitoring data of cloud-to-ground( CG) lightning positioning network and Doppler weather radar as well as MICAPS1°× 1° objective analysis field,a squall line process outside of the subtrop... Based on the monitoring data of cloud-to-ground( CG) lightning positioning network and Doppler weather radar as well as MICAPS1°× 1° objective analysis field,a squall line process outside of the subtropical high in low-latitude plateau on May 7,2010 was analyzed. The results showed that wind direction shear between low and high levels and low-level convergence zones provided favorable circulation background for the strong thunderstorm process,while high energy and high humidity,strong thermal instability and ascending motion at low and middle levels offered beneficial environmental conditions for the formation of the thunderstorm. 9 620 return strokes of cloud-to-ground lightning were monitored by the lightning positioning network,and cloud-to-ground lightning was distributed like bands between 584 and 586 hP a. The occurrence of cloud-to-ground lightning was mainly related to echo top and echo intensity at-10 ℃ stratification height,and it mainly appeared in zones where echo top height was larger than 13 km and echo intensity at-10 ℃ stratification height was 35-40 dB Z. Wind convergence and maintaining of high radial velocity were favorable for the development of convective echoes and occurrence of cloud-to-ground lightning. 展开更多
关键词 Squall line: LIGHTNING LOCATION system DOPPLER WEATHER radar Cloud-to-ground (CG) LIGHTNING
在线阅读 下载PDF
Evaluation of a Lagrangian advection scheme for cloud droplet diffusion growth with a maritime shallow cumulus cloud case
13
作者 Wenhao Hu Jiming Sun +1 位作者 Lei Wei Yongqing Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第6期29-34,共6页
A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model ... A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation. 展开更多
关键词 Lagrangian advection scheme Warm rain embryo formation Maritime shallow cumulus cloud
在线阅读 下载PDF
Study on Physical Characteristics of a Precipitation Cloud System in Hebei Province in Spring by Aircraft Observation
14
作者 Shuyi WANG Xiaoqing WANG +3 位作者 Xiaobo DONG Jiao FU Jiannan ZHANG Shengfen GAI 《Meteorological and Environmental Research》 CAS 2022年第3期28-36,共9页
Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018... Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018 was analyzed. Research results showed that the detected cloud system was the precipitation stratiform cloud in the later stage of development. The cloud layer developed stably, and the vertical structure was unevenly distributed. The concentration of small cloud particles in high-level clouds was low, and it fluctuated greatly in space, and presented a discontinuous distribution state. The concentration of large cloud particles and precipitation particles was high, which was conducive to the growth of cloud droplets and the aggregation of ice crystals. The concentration of small cloud particles and the content of supercooled water were high in the middle and low-level clouds. The precipitation cloud system had a significant hierarchical structure, which conformed to the "catalysis-supply" mechanism. From the upper layer to the lower layer, the cloud particle spectrum was mainly in the form of single peak or double peak distribution, which showed a monotonic decreasing trend in general. The spectral distribution of small cloud particles in the cloud was discontinuous, and the high-value areas of spectral concentration of large cloud particles and precipitation particles were concentrated in the upper part of the cloud layer, and the particle spectrum was significantly widened. There was inversion zone at the bottom of the cloud layer, which was conducive to the continuous increase of particle concentration and the formation of large supercooled water droplets. 展开更多
关键词 Stratiform cloud Vertical sounding Cloud microphysical characteristics Cloud particle spectrum
在线阅读 下载PDF
Artificial Seeding Effects of Convective Clouds on the Opening Day of Beijing 2008 Summer Olympics
15
作者 Hongyu Li Yanping Dai +1 位作者 Hua Wang Jingang Cui 《Journal of Geoscience and Environment Protection》 2017年第4期118-138,共21页
Using the radar reflectivity and intensive rainfall data, artificial seeding effects of convective clouds in Beijing on 8 August 2008, the opening day of the 29th Summer Olympics, were analyzed. The results indicate t... Using the radar reflectivity and intensive rainfall data, artificial seeding effects of convective clouds in Beijing on 8 August 2008, the opening day of the 29th Summer Olympics, were analyzed. The results indicate that, cloud seeding at single operation site for convective clouds invading from southwest direction may sharply mitigate the rainfall observed at leeward automatic weather stations within 5 - 10 min, while enhances the precipitation at a later stage about 10 - 20 min. Cloud seeding effects of operation sites Yuegezhuangxi, Changgouzhen, and Zhoukou, which are placed along the main moving routes or localized developing convective clouds in the west and center parts of Fangshan district, are very conspicuous. Combining the operation sites distribution and radar echoes, it is found that the site Changgouzhen, which is very close to the convective core, plays an essential role in suppressing the growth of convective cloud, reducing the coverage area of intense echoes classified as 45 - 60 dBZ, as well as mitigating the precipitation from neighboring automatic weather stations. Based on radar reflectivity and rainfall data, we find that the clouds over lots of operation sites in eastern Fangshan district are not cold enough to favor glaciogenic seeding with silver iodide, meanwhile, there is not too much precipitation observed. 展开更多
关键词 Cloud SEEDING CONVECTIVE CLOUDS OLYMPICS
在线阅读 下载PDF
A Simulation Study on the Clouds Microphysical Processes of Heavy Precipitation in Hebei Area Caused by"Lekima"
16
作者 Min PENG Wenxia YANG +3 位作者 Zhihui WU Jiannan ZHANG Yang YANG Shaoyu HOU 《Meteorological and Environmental Research》 CAS 2023年第4期24-31,共8页
During the period of the super typhoon"Lekima"(No.1909)landed on the coast of North China,a high-resolution numerical simulation study was carried out with the WRF model on the clouds microphysical process o... During the period of the super typhoon"Lekima"(No.1909)landed on the coast of North China,a high-resolution numerical simulation study was carried out with the WRF model on the clouds microphysical process of heavy precipitation.The results showed that(1)the water vapor convergence tended to develop and strengthen on the way forward of typhoon center,and the evolution of water vapor convergence zone was closely related to the development of typhoon asymmetric structure,and had a good corresponding relationship with the falling zone of the rainstorm.(2)The eastern coast of Hebei was located in the big-value area of water vapor transport belt in the northwest quadrant of the typhoon.Below 850 hPa,northeast wind appeared,and warm humid water vapor was transported from marine area to terrestrial by typhoon.Affected by upper-level westerly trough,westerly wind was dominated above 700 hPa,and water vapor convergence was transported from low level to upper level,and several rainstorm center appeared.(3)In the spiral rain bands of typhoon,the big-value center of graupel particles cooperated with the warm cloud enriched with water content,and the ground would produce a center of heavy precipitation,and the precipitation center of pure warm cloud appeared in 117.5°E.This phenomenon rarely occurred during continental cloud precipitation.Therefore,the contribution of warm cloud precipitation mechanism to the typhoon spiral rain belt should be emphasized. 展开更多
关键词 Lekima Simulated diagnosis Microphysical structure
在线阅读 下载PDF
Improved forecasting via physics-guided machine learning as exemplified using“21·7”extreme rainfall event in Henan
17
作者 Qi ZHONG Zhicha ZHANG +4 位作者 Xiuping YAO Shaoyu HOU Shenming FU Yong CAO Linguo JING 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第5期1652-1674,共23页
As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the exam... As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the example of the“21·7”extreme precipitation event(17–21 July 2021)in Henan Province,this study explores the potential of using physics-guided machine learning to improve the accuracy of forecasting the intensity and location of extreme precipitation.Three physics-guided ways of embedding physical features,fusing physical model forecasts and revised loss function are used,i.e.,(1)analyzing the anomalous circulation and thermodynamical factors,(2)analyzing the multi-model forecast bias and the associated underlying reasons for it,and(3)using professional forecasting knowledge to design the loss function,and the corresponding results are used as input for machine learning to improve the forecasting accuracy.The results indicate that by learning the relationship between anomalous physical features and heavy precipitation,the forecasting of precipitation intensity is improved significantly,but the location is rarely adjusted and more false alarms appear.Possible reasons for this are as follows.The anomalous features used here mainly contain information about large-scale systems and factors which are consistent with the model precipitation deviation;moreover,the samples of extreme precipitation are sparse and so the algorithm used here is simple.However,by combining“good and different”multi models with machine learning,the advantages of each model are extracted and then the location of the precipitation center in the forecast is improved significantly.Therefore,by combining the appropriate anomalous features with multi-model fusion,an integrated improvement of the forecast of the rainfall intensity and location is achieved.Overall,this study is a novel exploration to improve the refined forecasting of heavy precipitation with extreme intensity and high variability,and provides a reference for the deep fusion of physics and artificial intelligence methods to improve intense rain forecast. 展开更多
关键词 Extreme precipitation event Refined assessment Anomalous physical features Multi-model fusion Machine learning
原文传递
Cloud Water Resource in North China in 2017 Simulated by the CMA-CPEFS Cloud Resolving Model:Validation and Quantification 被引量:3
18
作者 Chao TAN Miao CAI +2 位作者 Yuquan ZHOU Weiguo LIU Zhijin HU 《Journal of Meteorological Research》 SCIE CSCD 2022年第3期520-538,共19页
Based on the concept of cloud water resource(CWR)and the cloud microphysical scheme developed by the Chinese Academy of Meteorological Sciences(CAMS),a coupled mesoscale and cloud-resolving model system is developed i... Based on the concept of cloud water resource(CWR)and the cloud microphysical scheme developed by the Chinese Academy of Meteorological Sciences(CAMS),a coupled mesoscale and cloud-resolving model system is developed in the study for CWR numerical quantification(CWR-NQ)in North China for 2017.The results show that(1)the model system is stable and capable for performing 1-yr continuous simulation with a water budget error of less than 0.2%,which indicates a good water balance.(2)Compared with the observational data,it is confirmed that the simulating capability of the CWR-NQ approach is decent for the spatial distribution of yearly cumulative precipitation,daily precipitation intensity,yearly average spatial distribution of water vapor.(3)Compared with the CWR diagnostic quantification(CWR-DQ),the results from the CWR-NQ differ mainly in cloud condensation and cloud evaporation.However,the deviation of the net condensation(condensation minus evaporation)between the two methods is less than 1%.For other composition variables,such as water vapor advection,surface evaporation,precipitation,cloud condensation,and total atmospheric water substances,the relative differences between the CWR-NQ and the CWR-DQ are less than 5%.(4)The spatiotemporal features of the CWR in North China are also studied.The positive correlation between water vapor convergence and precipitation on monthly and seasonal scales,and the lag of precipitation relative to water vapor convergence on hourly and daily scales are analyzed in detail,indicating the significance of the state term on hourly and daily scales.The effects of different spatial scales on the state term,advection term,source-sink term,and total amount are analyzed.It is shown that the advective term varies greatly at different spatiotemporal scales,which leads to differences at different spatiotemporal scales in CWR and related characteristic quantities. 展开更多
关键词 cloud water resource atmospheric moisture budget long-term continuous simulation model validation spatiotemporal characteristics
原文传递
Identifying Supercooled Liquid Water in Cloud Based on Airborne Observations: Correlation of Cloud Particle Number Concentration with Icing Probability and Proportion of Spherical Particles 被引量:3
19
作者 Yuquan ZHOU Can SONG +3 位作者 Miao CAI Siyao LIU Yang GAO Rong ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2022年第4期574-585,共12页
Identifying supercooled liquid water(SLW)in clouds is critical for weather modification,aviation safety,and atmospheric radiation calculations.Currently,aircraft identification in the SLW area mostly depends on empric... Identifying supercooled liquid water(SLW)in clouds is critical for weather modification,aviation safety,and atmospheric radiation calculations.Currently,aircraft identification in the SLW area mostly depends on emprical estimation of cloud particle number concentration(N_(c))in China,and scientific verification and quantitative identification criteria are urgently needed.In this study,the observations are from the Fast Cloud Droplets Probe,Rosemount ice detector(RICE),and Cloud Particle Imager(CP_(i))onboard a King Air aircraft during seven flights in 2018 and 2019 over central and eastern China.Based on this,the correlation among N_(c),the proportion of spherical particles(P_(s)),and the probability of icing(P_(i))in supercooled stratiform and cumulus-stratus clouds is statistically analyzed.Subsequently,this study proposes a method to identify SLW areas using N_(c) in combination with ambient temperature.The reliability of this method is evaluated through the true skill statistics(TSS)and threat score(TS)methods.Numerous airborne observations during the seven flights reveal a strong correlation among Nc,P_(s),and P_(i)at the temperature from 0 to−18°C.When Nc is greater than a certain threshold of 5 cm^(−3),there is always the SLW,i.e.,P_(i)and P_(s)are high.Evaluation results demonstrate that the TSS and TS values for Nc=5 cm^(−3)are higher than those for Nc<5 cm^(−3),and a larger Nc threshold(>5 cm^(−3))corresponds to a higher SLW identification hit rate and a higher SLW content.Therefore,Nc=5 cm^(−3)can be used as the minimum criterion for identifying the SLW in clouds at temperature lower than 0°C.The SLW identification method proposed in this study is especially helpful in common situations where aircraft are equipped with only Nc probes and without the CP_(i)and RICE. 展开更多
关键词 supercooled liquid water(SLW) icing probability cloud particle shape cloud particle number concentration
原文传递
Cloud Microphysical Processes and Atmospheric Water Budget during the 20 July 2021 Extreme Precipitation Event in Zhengzhou,China 被引量:3
20
作者 Weixi SHU Danhong FU +6 位作者 Hui XIAO Huiling YANG Yue SUN Xueliang GUO Yang ZHAO Jianfang DING Shujing SHEN 《Journal of Meteorological Research》 SCIE CSCD 2023年第5期722-742,共21页
This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,... This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,and the results from the high-resolution large-eddy simulation nested in the Weather Research and Forecasting(WRF)model with assimilation of satellite and radar observations.The results show that the abundant and persistent southeasterly supply of water vapor,induced by Typhoons In-Fa and Cempaka,under a particular synoptic pattern featured with abnormal northwestward displacement of the western Pacific subtropical high,was conducive to warm rain processes through a high vapor condensation rate of cloud water and an efficient collision–coalescence process of cloud water to rainwater.Such conditions were favorable for the formation and maintenance of the quasi-stationary warmsector heavy rainfall.Precipitation formation through the collision–coalescence process of cloud water to rainwater accounted for approximately 70%of the total,while the melting of snow and graupel accounted for only approximately 30%,indicating that warm cloud processes played a dominant role in this extreme rainfall event.However,enhancement of cold cloud processes promoted by latent heat release also exerted positive effect on rainfall during the period of most intense hourly rainfall.It was also found that rainwater advection from outside of Zhengzhou City played an important role in maintaining the extreme precipitation event. 展开更多
关键词 extreme precipitation event microphysical processes atmospheric water budget large-eddy simulation
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部