Hunan Weather Modification Center and Suizhou Dafang Precision Electromechanical Engineering Co.,Ltd. of Hubei commonly transformed and installed 83 double tube antiaircraft guns( 37 mm) of Hunan Province in order to ...Hunan Weather Modification Center and Suizhou Dafang Precision Electromechanical Engineering Co.,Ltd. of Hubei commonly transformed and installed 83 double tube antiaircraft guns( 37 mm) of Hunan Province in order to realize remote control of computer. After transformation,loading capacity of ammunition feeding machine became large,which could shorten the time of filling shells in the case of short airspace time;one shell launch volume was more,which could improve hail suppression effect; the degree of automation was greatly improved,which could save manpower by more than 50%. It fully embodied the modernization level of Hunan weather modification operation.展开更多
This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Are...This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.展开更多
This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Da...This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Dataset of the Guangdong-Hong Kong-Macao Greater Bay Area,the performance of OF-ConvGRU was evaluated against OF and ConvGRU methods.Threat Score(TS)and Bias Score(BIAS)were employed to assess extrapolation accuracy across various echo intensities(20-50 dBz)and weather phenomena.Results demonstrate that OF-ConvGRU significantly enhances prediction accuracy for moderate-intensity echoes(30-40 dBz),effectively combining OF s precise motion estimation with ConvGRU s nonlinear learning capabilities.However,challenges persist in low-intensity(20 dBz)and high-intensity(50 dBz)echo predictions.The study reveals distinct advantages of each method in specific contexts,highlighting the importance of multi-method approaches in operational nowcasting.OF-ConvGRU shows promise in balancing short-term accuracy with long-term stability,particularly for complex weather systems.展开更多
The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central an...The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central and southern regions of North China on 22 May 2017.The microphysical structural characteristics and processes near the embedded convection core and in the stratiform cloud are analyzed comparatively.Particular attention is given to the effect of riming on the microphysical properties near the upper boundary of the melting layer and to the factors influencing riming efficiency.The collaborative observations reveal that the particle size distributions observed near the convection core and in the stratiform region are close,while the particle properties like habit and riming degree are quite different.Above the melting layer,larger plate-like ice particles and supercooled water droplets(D>50μm)are more abundant near the convective core,leading to higher collision efficiencies between ice particles and supercooled water droplets.Larger fluctuation amplitudes of vertical airflow near the convective core also contribute to the increased riming activity and the formation of more heavily rimed particles,such as graupel.Furthermore,in situ measurements from airborne probes also revealed that above the melting layer,the riming process involves two stages:the mass of snow crystals grows as supercooled droplets merge internally without changing size,followed by external freezing that significantly enlarges the crystals.展开更多
PM_(2.5) and black carbon(BC)are important air pollutants impacting radiation balance,air quality,health,and ecosystems.Ozone(O_(3))levels are increasing despite decreases in other pollutants,posing a challenge for po...PM_(2.5) and black carbon(BC)are important air pollutants impacting radiation balance,air quality,health,and ecosystems.Ozone(O_(3))levels are increasing despite decreases in other pollutants,posing a challenge for pollution control,especially in coastal cities like Zhoushan,where the monsoonal climate can exacerbate PM_(2.5) and ozone pollution.This study conducted continuous online measurements of major atmospheric pollutants in Zhoushan,Zhejiang Province,in 2020.The results indicate that the highest contribution from local air masses in Zhoushan is observed in spring,accounting for 17.7%,while the greatest average contribution from northern Zhejiang Province,Jiangsu Province,and Shanghai occurs in winter,at 18.5%.Pollutant concentrationswere seasonally variable,with PM_(2.5),BC,and sulfur dioxide concentrations 56.6%,36%,and 58.2%higher in the cold season compared to the warm season.The O_(3) in spring is approximately 50%higher than that in summer.Ship emissions significantly contributed to BC,nitrogen oxides(NO_(x)),and carbon monoxide in Zhoushan.In spring,PM_(2.5) sources included photochemical processes and northern air mass transport,while in winter,PM_(2.5) was due to regional transport.The inhibitory effect of PM_(2.5) on O_(3) formation in the Zhoushan area is relatively weak.Reducing NO_(x) emissions may increase O_(3),emphasizing the need for volatile organic compounds monitoring and regional control measures to improve air quality and ensure sustainable development in Zhoushan.展开更多
The strong sandstorm weather process analysis has been done with the information digital diagrams method and times extended observation information on 23rd May,2004 in Gansu Province. The research results reveal the u...The strong sandstorm weather process analysis has been done with the information digital diagrams method and times extended observation information on 23rd May,2004 in Gansu Province. The research results reveal the unique mechanism structure of sandstorm disaster weather and the signification of irregular information,approve that the region digital diagrams has the capability to forecast the character and intension of transition disaster weather,and explain certainly that the meteorological problem is transformation problem of evolvement science.展开更多
Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is d...Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is divided into premonsoon, monsoon, and post-monsoon periods based on the different large-scale circumstances. In addition to disdrometer data, sounding observation, FY-2E satellite, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), and NCEP reanalysis datasets are used to illustrate the dynamical and microphysical characteristics associated with the rainfall in different periods. Significant variations have been observed in respect of raindrops among the three periods. Intercomparison reveals that small drops (D < 1 mm) are prevalent during pre-monsoon precipitation, whereas medium drops (1?3 mm) are predominant in monsoon precipitation. Overall, the post-monsoon precipitation is characterized by the least concentration of raindrops among the three periods. But, several large raindrops could also occur due to severe convective precipitation events in this period. Classification of the precipitation into stratiform and convective regimes shows that the lg(Nw) value of convective rainfall is the largest (smallest) in the pre-monsoon (post-monsoon) period, whereas the Dm value is the smallest (largest) in the pre-monsoon (post-monsoon) period. An inversion relationship between the coefficient A and the exponential b of the Z?R relationships for precipitation during the three periods is found. Empirical relations between Dm and the radar reflectivity factors at Ku and Ka bands are also derived to improve the rainfall retrieval algorithms over the SCS. Furthermore, the possible causative mechanisms for the significant RSD variability in different periods are also discussed with respect to warm and cold rain processes, raindrop evaporation, convective activities, and other meteorological factors.展开更多
Taking into account moisture in virtue of general potential temperature,the author derive a three-dimensional(3D) pseudomomentum wave-activity relation for the moist atmosphere from the primitive equations in Cartesia...Taking into account moisture in virtue of general potential temperature,the author derive a three-dimensional(3D) pseudomomentum wave-activity relation for the moist atmosphere from the primitive equations in Cartesian coordinates using the Momentum-Casimir method.Since the wave-activity relation is constructed in an ageostrophic and non-hydrostatic dynamical framework,it may be applicable to diagnosing the evolution and propagation of mesoscale systems leading to heavy rainfall.The theoretical analysis shows that,besides the local change of wave-activity flux divergence and source or sink,the wave-activity relation includes two additional forcing terms.The first is the zonal gradient of difference between general potential temperature and potential temperature perturbations,and the second is the covariance of the solenoid and gradient of water vapor,denoting the direct influence of moisture on wave-activity density.The wave-activity density was applied to a heavy precipitation event occurring in the Jianghuai region of China.The calculation showed that the wave-activity density was consistent with 6-h accumulated precipitation observations,in terms of both spatial distribution and temporal tendency.This suggested that the disturbance represented by wave-activity density was closely related to the heavy precipitation.Although the wave-activity flux divergence and the covariance of the solenoid and gradient of water vapor made the primary contribution to the local change of wave-activity density,the covariance was more remarkable.The zonal gradient of difference between general potential temperature and potential temperature perturbations made a weaker contribution to the waveactivity density.展开更多
A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in ...A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7 μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and develop-ment are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth.展开更多
In recent years,the Cloud Imaging Probe(CIP)and Precipitation Imaging Probe(PIP)produced by Droplet Measurement Technologies(DMT)have been introduced by a number of meteorological research and operation centers in Chi...In recent years,the Cloud Imaging Probe(CIP)and Precipitation Imaging Probe(PIP)produced by Droplet Measurement Technologies(DMT)have been introduced by a number of meteorological research and operation centers in China.The supporting software provided by DMT,i.e.,PADS(Particle Analysis and Display System),cannot output detailed information on each individual particle,which definitely limits the in-depth utilization of cloud and precipitation particle image data in China.In this paper,particle-by-particle information was extracted by decompressing the CIP and PIP original particle image data,based on which a new definition of the dimension for nonspherical particles is proposed by using the area of the convex hull enclosing a particle to obtain the equivalent diameter of a circle with equal area.Based on the data detected during one flight in Inner Mongolia,the particle size distribution obtained using the new particle size definition and that used by the other four existing definitions are compared.The results show that the particle number concentration calculated using different particle size definitions can vary by up to an order of magnitude.The result obtained based on the new particle size definition is closest to that calculated with the area-equivalent diameter definition.展开更多
Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The c...Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets.展开更多
Based on the monitoring data of cloud-to-ground( CG) lightning positioning network and Doppler weather radar as well as MICAPS1°× 1° objective analysis field,a squall line process outside of the subtrop...Based on the monitoring data of cloud-to-ground( CG) lightning positioning network and Doppler weather radar as well as MICAPS1°× 1° objective analysis field,a squall line process outside of the subtropical high in low-latitude plateau on May 7,2010 was analyzed. The results showed that wind direction shear between low and high levels and low-level convergence zones provided favorable circulation background for the strong thunderstorm process,while high energy and high humidity,strong thermal instability and ascending motion at low and middle levels offered beneficial environmental conditions for the formation of the thunderstorm. 9 620 return strokes of cloud-to-ground lightning were monitored by the lightning positioning network,and cloud-to-ground lightning was distributed like bands between 584 and 586 hP a. The occurrence of cloud-to-ground lightning was mainly related to echo top and echo intensity at-10 ℃ stratification height,and it mainly appeared in zones where echo top height was larger than 13 km and echo intensity at-10 ℃ stratification height was 35-40 dB Z. Wind convergence and maintaining of high radial velocity were favorable for the development of convective echoes and occurrence of cloud-to-ground lightning.展开更多
A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model ...A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.展开更多
Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018...Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018 was analyzed. Research results showed that the detected cloud system was the precipitation stratiform cloud in the later stage of development. The cloud layer developed stably, and the vertical structure was unevenly distributed. The concentration of small cloud particles in high-level clouds was low, and it fluctuated greatly in space, and presented a discontinuous distribution state. The concentration of large cloud particles and precipitation particles was high, which was conducive to the growth of cloud droplets and the aggregation of ice crystals. The concentration of small cloud particles and the content of supercooled water were high in the middle and low-level clouds. The precipitation cloud system had a significant hierarchical structure, which conformed to the "catalysis-supply" mechanism. From the upper layer to the lower layer, the cloud particle spectrum was mainly in the form of single peak or double peak distribution, which showed a monotonic decreasing trend in general. The spectral distribution of small cloud particles in the cloud was discontinuous, and the high-value areas of spectral concentration of large cloud particles and precipitation particles were concentrated in the upper part of the cloud layer, and the particle spectrum was significantly widened. There was inversion zone at the bottom of the cloud layer, which was conducive to the continuous increase of particle concentration and the formation of large supercooled water droplets.展开更多
Using the radar reflectivity and intensive rainfall data, artificial seeding effects of convective clouds in Beijing on 8 August 2008, the opening day of the 29th Summer Olympics, were analyzed. The results indicate t...Using the radar reflectivity and intensive rainfall data, artificial seeding effects of convective clouds in Beijing on 8 August 2008, the opening day of the 29th Summer Olympics, were analyzed. The results indicate that, cloud seeding at single operation site for convective clouds invading from southwest direction may sharply mitigate the rainfall observed at leeward automatic weather stations within 5 - 10 min, while enhances the precipitation at a later stage about 10 - 20 min. Cloud seeding effects of operation sites Yuegezhuangxi, Changgouzhen, and Zhoukou, which are placed along the main moving routes or localized developing convective clouds in the west and center parts of Fangshan district, are very conspicuous. Combining the operation sites distribution and radar echoes, it is found that the site Changgouzhen, which is very close to the convective core, plays an essential role in suppressing the growth of convective cloud, reducing the coverage area of intense echoes classified as 45 - 60 dBZ, as well as mitigating the precipitation from neighboring automatic weather stations. Based on radar reflectivity and rainfall data, we find that the clouds over lots of operation sites in eastern Fangshan district are not cold enough to favor glaciogenic seeding with silver iodide, meanwhile, there is not too much precipitation observed.展开更多
During the period of the super typhoon"Lekima"(No.1909)landed on the coast of North China,a high-resolution numerical simulation study was carried out with the WRF model on the clouds microphysical process o...During the period of the super typhoon"Lekima"(No.1909)landed on the coast of North China,a high-resolution numerical simulation study was carried out with the WRF model on the clouds microphysical process of heavy precipitation.The results showed that(1)the water vapor convergence tended to develop and strengthen on the way forward of typhoon center,and the evolution of water vapor convergence zone was closely related to the development of typhoon asymmetric structure,and had a good corresponding relationship with the falling zone of the rainstorm.(2)The eastern coast of Hebei was located in the big-value area of water vapor transport belt in the northwest quadrant of the typhoon.Below 850 hPa,northeast wind appeared,and warm humid water vapor was transported from marine area to terrestrial by typhoon.Affected by upper-level westerly trough,westerly wind was dominated above 700 hPa,and water vapor convergence was transported from low level to upper level,and several rainstorm center appeared.(3)In the spiral rain bands of typhoon,the big-value center of graupel particles cooperated with the warm cloud enriched with water content,and the ground would produce a center of heavy precipitation,and the precipitation center of pure warm cloud appeared in 117.5°E.This phenomenon rarely occurred during continental cloud precipitation.Therefore,the contribution of warm cloud precipitation mechanism to the typhoon spiral rain belt should be emphasized.展开更多
As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the exam...As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the example of the“21·7”extreme precipitation event(17–21 July 2021)in Henan Province,this study explores the potential of using physics-guided machine learning to improve the accuracy of forecasting the intensity and location of extreme precipitation.Three physics-guided ways of embedding physical features,fusing physical model forecasts and revised loss function are used,i.e.,(1)analyzing the anomalous circulation and thermodynamical factors,(2)analyzing the multi-model forecast bias and the associated underlying reasons for it,and(3)using professional forecasting knowledge to design the loss function,and the corresponding results are used as input for machine learning to improve the forecasting accuracy.The results indicate that by learning the relationship between anomalous physical features and heavy precipitation,the forecasting of precipitation intensity is improved significantly,but the location is rarely adjusted and more false alarms appear.Possible reasons for this are as follows.The anomalous features used here mainly contain information about large-scale systems and factors which are consistent with the model precipitation deviation;moreover,the samples of extreme precipitation are sparse and so the algorithm used here is simple.However,by combining“good and different”multi models with machine learning,the advantages of each model are extracted and then the location of the precipitation center in the forecast is improved significantly.Therefore,by combining the appropriate anomalous features with multi-model fusion,an integrated improvement of the forecast of the rainfall intensity and location is achieved.Overall,this study is a novel exploration to improve the refined forecasting of heavy precipitation with extreme intensity and high variability,and provides a reference for the deep fusion of physics and artificial intelligence methods to improve intense rain forecast.展开更多
Based on the concept of cloud water resource(CWR)and the cloud microphysical scheme developed by the Chinese Academy of Meteorological Sciences(CAMS),a coupled mesoscale and cloud-resolving model system is developed i...Based on the concept of cloud water resource(CWR)and the cloud microphysical scheme developed by the Chinese Academy of Meteorological Sciences(CAMS),a coupled mesoscale and cloud-resolving model system is developed in the study for CWR numerical quantification(CWR-NQ)in North China for 2017.The results show that(1)the model system is stable and capable for performing 1-yr continuous simulation with a water budget error of less than 0.2%,which indicates a good water balance.(2)Compared with the observational data,it is confirmed that the simulating capability of the CWR-NQ approach is decent for the spatial distribution of yearly cumulative precipitation,daily precipitation intensity,yearly average spatial distribution of water vapor.(3)Compared with the CWR diagnostic quantification(CWR-DQ),the results from the CWR-NQ differ mainly in cloud condensation and cloud evaporation.However,the deviation of the net condensation(condensation minus evaporation)between the two methods is less than 1%.For other composition variables,such as water vapor advection,surface evaporation,precipitation,cloud condensation,and total atmospheric water substances,the relative differences between the CWR-NQ and the CWR-DQ are less than 5%.(4)The spatiotemporal features of the CWR in North China are also studied.The positive correlation between water vapor convergence and precipitation on monthly and seasonal scales,and the lag of precipitation relative to water vapor convergence on hourly and daily scales are analyzed in detail,indicating the significance of the state term on hourly and daily scales.The effects of different spatial scales on the state term,advection term,source-sink term,and total amount are analyzed.It is shown that the advective term varies greatly at different spatiotemporal scales,which leads to differences at different spatiotemporal scales in CWR and related characteristic quantities.展开更多
Identifying supercooled liquid water(SLW)in clouds is critical for weather modification,aviation safety,and atmospheric radiation calculations.Currently,aircraft identification in the SLW area mostly depends on empric...Identifying supercooled liquid water(SLW)in clouds is critical for weather modification,aviation safety,and atmospheric radiation calculations.Currently,aircraft identification in the SLW area mostly depends on emprical estimation of cloud particle number concentration(N_(c))in China,and scientific verification and quantitative identification criteria are urgently needed.In this study,the observations are from the Fast Cloud Droplets Probe,Rosemount ice detector(RICE),and Cloud Particle Imager(CP_(i))onboard a King Air aircraft during seven flights in 2018 and 2019 over central and eastern China.Based on this,the correlation among N_(c),the proportion of spherical particles(P_(s)),and the probability of icing(P_(i))in supercooled stratiform and cumulus-stratus clouds is statistically analyzed.Subsequently,this study proposes a method to identify SLW areas using N_(c) in combination with ambient temperature.The reliability of this method is evaluated through the true skill statistics(TSS)and threat score(TS)methods.Numerous airborne observations during the seven flights reveal a strong correlation among Nc,P_(s),and P_(i)at the temperature from 0 to−18°C.When Nc is greater than a certain threshold of 5 cm^(−3),there is always the SLW,i.e.,P_(i)and P_(s)are high.Evaluation results demonstrate that the TSS and TS values for Nc=5 cm^(−3)are higher than those for Nc<5 cm^(−3),and a larger Nc threshold(>5 cm^(−3))corresponds to a higher SLW identification hit rate and a higher SLW content.Therefore,Nc=5 cm^(−3)can be used as the minimum criterion for identifying the SLW in clouds at temperature lower than 0°C.The SLW identification method proposed in this study is especially helpful in common situations where aircraft are equipped with only Nc probes and without the CP_(i)and RICE.展开更多
This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,...This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,and the results from the high-resolution large-eddy simulation nested in the Weather Research and Forecasting(WRF)model with assimilation of satellite and radar observations.The results show that the abundant and persistent southeasterly supply of water vapor,induced by Typhoons In-Fa and Cempaka,under a particular synoptic pattern featured with abnormal northwestward displacement of the western Pacific subtropical high,was conducive to warm rain processes through a high vapor condensation rate of cloud water and an efficient collision–coalescence process of cloud water to rainwater.Such conditions were favorable for the formation and maintenance of the quasi-stationary warmsector heavy rainfall.Precipitation formation through the collision–coalescence process of cloud water to rainwater accounted for approximately 70%of the total,while the melting of snow and graupel accounted for only approximately 30%,indicating that warm cloud processes played a dominant role in this extreme rainfall event.However,enhancement of cold cloud processes promoted by latent heat release also exerted positive effect on rainfall during the period of most intense hourly rainfall.It was also found that rainwater advection from outside of Zhengzhou City played an important role in maintaining the extreme precipitation event.展开更多
基金Supported by Topic of the Diagnostic Analysis of Spring Hail Suppression Operation Condition in Hunan
文摘Hunan Weather Modification Center and Suizhou Dafang Precision Electromechanical Engineering Co.,Ltd. of Hubei commonly transformed and installed 83 double tube antiaircraft guns( 37 mm) of Hunan Province in order to realize remote control of computer. After transformation,loading capacity of ammunition feeding machine became large,which could shorten the time of filling shells in the case of short airspace time;one shell launch volume was more,which could improve hail suppression effect; the degree of automation was greatly improved,which could save manpower by more than 50%. It fully embodied the modernization level of Hunan weather modification operation.
文摘This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.
基金Scientific Research and Development Project of Hebei Meteorological Bureau(23ky08).
文摘This study proposes a novel radar echo extrapolation algorithm,OF-ConvGRU,which integrates Optical Flow(OF)and Convolutional Gated Recurrent Unit(ConvGRU)methods for improved nowcasting.Using the Standardized Radar Dataset of the Guangdong-Hong Kong-Macao Greater Bay Area,the performance of OF-ConvGRU was evaluated against OF and ConvGRU methods.Threat Score(TS)and Bias Score(BIAS)were employed to assess extrapolation accuracy across various echo intensities(20-50 dBz)and weather phenomena.Results demonstrate that OF-ConvGRU significantly enhances prediction accuracy for moderate-intensity echoes(30-40 dBz),effectively combining OF s precise motion estimation with ConvGRU s nonlinear learning capabilities.However,challenges persist in low-intensity(20 dBz)and high-intensity(50 dBz)echo predictions.The study reveals distinct advantages of each method in specific contexts,highlighting the importance of multi-method approaches in operational nowcasting.OF-ConvGRU shows promise in balancing short-term accuracy with long-term stability,particularly for complex weather systems.
基金supported by the National Natural Science Foundation of China(Grant No.42025501)the Natural Science Foundation of Hebei Province(Grant No.D2024304015)+4 种基金the Fundamental Research Funds for the Central Universities,including Grant No.020714380217the Cemac“GeoX”Interdisciplinary Program(Grant No.020714380210)the Open Grants of the Key Laboratory of Radar Meteorology,China Meteorological Administration(Grant No.2023LRM-B05)the Hebei Meteorological Service Scientific Research and Development Project(Grant No.23ky08)the Open Research Program of the State Key Laboratory of Severe Weather(Grant No.2023LASW-A01)。
文摘The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central and southern regions of North China on 22 May 2017.The microphysical structural characteristics and processes near the embedded convection core and in the stratiform cloud are analyzed comparatively.Particular attention is given to the effect of riming on the microphysical properties near the upper boundary of the melting layer and to the factors influencing riming efficiency.The collaborative observations reveal that the particle size distributions observed near the convection core and in the stratiform region are close,while the particle properties like habit and riming degree are quite different.Above the melting layer,larger plate-like ice particles and supercooled water droplets(D>50μm)are more abundant near the convective core,leading to higher collision efficiencies between ice particles and supercooled water droplets.Larger fluctuation amplitudes of vertical airflow near the convective core also contribute to the increased riming activity and the formation of more heavily rimed particles,such as graupel.Furthermore,in situ measurements from airborne probes also revealed that above the melting layer,the riming process involves two stages:the mass of snow crystals grows as supercooled droplets merge internally without changing size,followed by external freezing that significantly enlarges the crystals.
基金supported by Zhejiang Province Science Fund for Distinguished Young Scholars(No.LR24D050001)the Joint Funds of Zhejiang Provincial Natural Science Foundation of China(No.LZJMZ23D050002)+3 种基金the National Natural Science Foundation of China(No.42175116)the Scientific Research Foundation for Guilin University of Technology(No.GUTQDJJ2023046)supported by Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollutionthe Modern Industry College of Ecology and Environmental Protection,Guilin University of Technology.
文摘PM_(2.5) and black carbon(BC)are important air pollutants impacting radiation balance,air quality,health,and ecosystems.Ozone(O_(3))levels are increasing despite decreases in other pollutants,posing a challenge for pollution control,especially in coastal cities like Zhoushan,where the monsoonal climate can exacerbate PM_(2.5) and ozone pollution.This study conducted continuous online measurements of major atmospheric pollutants in Zhoushan,Zhejiang Province,in 2020.The results indicate that the highest contribution from local air masses in Zhoushan is observed in spring,accounting for 17.7%,while the greatest average contribution from northern Zhejiang Province,Jiangsu Province,and Shanghai occurs in winter,at 18.5%.Pollutant concentrationswere seasonally variable,with PM_(2.5),BC,and sulfur dioxide concentrations 56.6%,36%,and 58.2%higher in the cold season compared to the warm season.The O_(3) in spring is approximately 50%higher than that in summer.Ship emissions significantly contributed to BC,nitrogen oxides(NO_(x)),and carbon monoxide in Zhoushan.In spring,PM_(2.5) sources included photochemical processes and northern air mass transport,while in winter,PM_(2.5) was due to regional transport.The inhibitory effect of PM_(2.5) on O_(3) formation in the Zhoushan area is relatively weak.Reducing NO_(x) emissions may increase O_(3),emphasizing the need for volatile organic compounds monitoring and regional control measures to improve air quality and ensure sustainable development in Zhoushan.
文摘The strong sandstorm weather process analysis has been done with the information digital diagrams method and times extended observation information on 23rd May,2004 in Gansu Province. The research results reveal the unique mechanism structure of sandstorm disaster weather and the signification of irregular information,approve that the region digital diagrams has the capability to forecast the character and intension of transition disaster weather,and explain certainly that the meteorological problem is transformation problem of evolvement science.
基金primarily supported by the Chinese Beijige Open Research Fund for the Nanjing Joint Center of Atmospheric Research (Grant No. NJCAR 2018ZD03)the National Key Research and Development Program of China (2018YFC1507304)the National Natural Science Foundation of China (Grant Nos. 41575024 and 41865009)
文摘Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is divided into premonsoon, monsoon, and post-monsoon periods based on the different large-scale circumstances. In addition to disdrometer data, sounding observation, FY-2E satellite, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), and NCEP reanalysis datasets are used to illustrate the dynamical and microphysical characteristics associated with the rainfall in different periods. Significant variations have been observed in respect of raindrops among the three periods. Intercomparison reveals that small drops (D < 1 mm) are prevalent during pre-monsoon precipitation, whereas medium drops (1?3 mm) are predominant in monsoon precipitation. Overall, the post-monsoon precipitation is characterized by the least concentration of raindrops among the three periods. But, several large raindrops could also occur due to severe convective precipitation events in this period. Classification of the precipitation into stratiform and convective regimes shows that the lg(Nw) value of convective rainfall is the largest (smallest) in the pre-monsoon (post-monsoon) period, whereas the Dm value is the smallest (largest) in the pre-monsoon (post-monsoon) period. An inversion relationship between the coefficient A and the exponential b of the Z?R relationships for precipitation during the three periods is found. Empirical relations between Dm and the radar reflectivity factors at Ku and Ka bands are also derived to improve the rainfall retrieval algorithms over the SCS. Furthermore, the possible causative mechanisms for the significant RSD variability in different periods are also discussed with respect to warm and cold rain processes, raindrop evaporation, convective activities, and other meteorological factors.
基金supported by the National Basic Research Program of China (Grant No.2009CB421505)the Key Program of the Chinese Academy of Sciences (Grant No.KZZD-EW-05)+2 种基金the project of Chinese Academy of Meteorological Sciences (Grant No.2011LASW-B15)the Spectial Scientific Research Fund of Meteorological Public Welfare of the Ministry of Sciences and Technology (Grant No.GYHY200906004)and the National Natural Science Foundation of China (Grant Nos.41175060,41075098,and 41005005)
文摘Taking into account moisture in virtue of general potential temperature,the author derive a three-dimensional(3D) pseudomomentum wave-activity relation for the moist atmosphere from the primitive equations in Cartesian coordinates using the Momentum-Casimir method.Since the wave-activity relation is constructed in an ageostrophic and non-hydrostatic dynamical framework,it may be applicable to diagnosing the evolution and propagation of mesoscale systems leading to heavy rainfall.The theoretical analysis shows that,besides the local change of wave-activity flux divergence and source or sink,the wave-activity relation includes two additional forcing terms.The first is the zonal gradient of difference between general potential temperature and potential temperature perturbations,and the second is the covariance of the solenoid and gradient of water vapor,denoting the direct influence of moisture on wave-activity density.The wave-activity density was applied to a heavy precipitation event occurring in the Jianghuai region of China.The calculation showed that the wave-activity density was consistent with 6-h accumulated precipitation observations,in terms of both spatial distribution and temporal tendency.This suggested that the disturbance represented by wave-activity density was closely related to the heavy precipitation.Although the wave-activity flux divergence and the covariance of the solenoid and gradient of water vapor made the primary contribution to the local change of wave-activity density,the covariance was more remarkable.The zonal gradient of difference between general potential temperature and potential temperature perturbations made a weaker contribution to the waveactivity density.
基金supported jointly by Chinese Ministry of Science and Technology (Grant 2005DIB3J099)Science Foundation of Shaanxi Province (Grant 2007D11)
文摘A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7 μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and develop-ment are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth.
基金jointly funded by the National Key R&D Program of China[grant numbers 2019YFC1510301 and 2018YFC1505702]the Basic Research Fund of the Chinese Academy of Meteorological Sciences[grant number 2020Z008].
文摘In recent years,the Cloud Imaging Probe(CIP)and Precipitation Imaging Probe(PIP)produced by Droplet Measurement Technologies(DMT)have been introduced by a number of meteorological research and operation centers in China.The supporting software provided by DMT,i.e.,PADS(Particle Analysis and Display System),cannot output detailed information on each individual particle,which definitely limits the in-depth utilization of cloud and precipitation particle image data in China.In this paper,particle-by-particle information was extracted by decompressing the CIP and PIP original particle image data,based on which a new definition of the dimension for nonspherical particles is proposed by using the area of the convex hull enclosing a particle to obtain the equivalent diameter of a circle with equal area.Based on the data detected during one flight in Inner Mongolia,the particle size distribution obtained using the new particle size definition and that used by the other four existing definitions are compared.The results show that the particle number concentration calculated using different particle size definitions can vary by up to an order of magnitude.The result obtained based on the new particle size definition is closest to that calculated with the area-equivalent diameter definition.
基金funded by the National Key Research and Devel-opment Program of China[grant number 2017YFC1501405]the National Natural Science Foundation of China[grant numbers 41975180,41705119,and 41575131]the National Center of Meteorology,Abu Dhabi,AE(UAE Research Program for Rain Enhancement Science)。
文摘Based on cloud-probe data and airborne Ka-band cloud radar data collected in Baoding on 5 August 2018,the microphysical structural characteristics of cumulus(Cu)cloud at the precipitation stage were investigated.The cloud droplets in the Cu cloud were found to be significantly larger than those in stratiform(STF)cloud.In the Cu cloud,most cloud particles were between 7 and 10μm in diameter,while in the STF cloud the majority of cloud particles grew no larger than 2μm.The sensitivity of cloud properties to aerosols varied with height.The cloud droplet effective radius showed a negative relationship with the aerosol number concentration(Na)in the cloud planetary boundary layer(PBL)and upper layer above the PBL.However,the cloud droplet concentration(Nc)varied little with decreased Na in the high liquid water content region above 1500 m.High Na values of between 300 and 1853 cm-3 were found in the PBL,and the maximum Na was sampled near the surface in August in the Hebei region,which was lower than that in autumn and winter.High radar reflectivity corresponded to large FCDP(fast cloud droplet probe)particle concentrations and small aerosol particle concentrations,and vice versa for low radar reflectivity.Strong updrafts in the Cu cloud increased the peak radius and Nc,and broadened cloud droplet spectrum;lower air temperature was favorable for particle condensational growth and produced larger droplets.
基金Supported by National Natural Science Foundation of China(No.41305002)Science and Technology Project of Yunnan Province(No.2014RA002,2016RA096)
文摘Based on the monitoring data of cloud-to-ground( CG) lightning positioning network and Doppler weather radar as well as MICAPS1°× 1° objective analysis field,a squall line process outside of the subtropical high in low-latitude plateau on May 7,2010 was analyzed. The results showed that wind direction shear between low and high levels and low-level convergence zones provided favorable circulation background for the strong thunderstorm process,while high energy and high humidity,strong thermal instability and ascending motion at low and middle levels offered beneficial environmental conditions for the formation of the thunderstorm. 9 620 return strokes of cloud-to-ground lightning were monitored by the lightning positioning network,and cloud-to-ground lightning was distributed like bands between 584 and 586 hP a. The occurrence of cloud-to-ground lightning was mainly related to echo top and echo intensity at-10 ℃ stratification height,and it mainly appeared in zones where echo top height was larger than 13 km and echo intensity at-10 ℃ stratification height was 35-40 dB Z. Wind convergence and maintaining of high radial velocity were favorable for the development of convective echoes and occurrence of cloud-to-ground lightning.
基金This research was funded by the National Natural Science Foundation of China[grant number 41705119]a basic research project[grant number xxx0109-301].
文摘A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.
基金Supported by National Key R&D Plan Projects (2018YFC1507900)Hebei Province Science and Technology Plan Program(20375402D)。
文摘Using data of airborne particle measurement system, weather radar and Ka-band millimeter wave cloud-meter, physical structure characteristics of a typical stable stratiform cloud in Hebei Province on February 27, 2018 was analyzed. Research results showed that the detected cloud system was the precipitation stratiform cloud in the later stage of development. The cloud layer developed stably, and the vertical structure was unevenly distributed. The concentration of small cloud particles in high-level clouds was low, and it fluctuated greatly in space, and presented a discontinuous distribution state. The concentration of large cloud particles and precipitation particles was high, which was conducive to the growth of cloud droplets and the aggregation of ice crystals. The concentration of small cloud particles and the content of supercooled water were high in the middle and low-level clouds. The precipitation cloud system had a significant hierarchical structure, which conformed to the "catalysis-supply" mechanism. From the upper layer to the lower layer, the cloud particle spectrum was mainly in the form of single peak or double peak distribution, which showed a monotonic decreasing trend in general. The spectral distribution of small cloud particles in the cloud was discontinuous, and the high-value areas of spectral concentration of large cloud particles and precipitation particles were concentrated in the upper part of the cloud layer, and the particle spectrum was significantly widened. There was inversion zone at the bottom of the cloud layer, which was conducive to the continuous increase of particle concentration and the formation of large supercooled water droplets.
文摘Using the radar reflectivity and intensive rainfall data, artificial seeding effects of convective clouds in Beijing on 8 August 2008, the opening day of the 29th Summer Olympics, were analyzed. The results indicate that, cloud seeding at single operation site for convective clouds invading from southwest direction may sharply mitigate the rainfall observed at leeward automatic weather stations within 5 - 10 min, while enhances the precipitation at a later stage about 10 - 20 min. Cloud seeding effects of operation sites Yuegezhuangxi, Changgouzhen, and Zhoukou, which are placed along the main moving routes or localized developing convective clouds in the west and center parts of Fangshan district, are very conspicuous. Combining the operation sites distribution and radar echoes, it is found that the site Changgouzhen, which is very close to the convective core, plays an essential role in suppressing the growth of convective cloud, reducing the coverage area of intense echoes classified as 45 - 60 dBZ, as well as mitigating the precipitation from neighboring automatic weather stations. Based on radar reflectivity and rainfall data, we find that the clouds over lots of operation sites in eastern Fangshan district are not cold enough to favor glaciogenic seeding with silver iodide, meanwhile, there is not too much precipitation observed.
基金Supported by Bohai Rim Regional Science and Technology Collaborative Innovation Fund(QYXM202004)Hebei Provincial Science and Technology Plan(19275420D)"Cloud Precipitation Physics Aircraft Detection and Application Innovation Team"Project of Hebei Province Weather Modification Office.
文摘During the period of the super typhoon"Lekima"(No.1909)landed on the coast of North China,a high-resolution numerical simulation study was carried out with the WRF model on the clouds microphysical process of heavy precipitation.The results showed that(1)the water vapor convergence tended to develop and strengthen on the way forward of typhoon center,and the evolution of water vapor convergence zone was closely related to the development of typhoon asymmetric structure,and had a good corresponding relationship with the falling zone of the rainstorm.(2)The eastern coast of Hebei was located in the big-value area of water vapor transport belt in the northwest quadrant of the typhoon.Below 850 hPa,northeast wind appeared,and warm humid water vapor was transported from marine area to terrestrial by typhoon.Affected by upper-level westerly trough,westerly wind was dominated above 700 hPa,and water vapor convergence was transported from low level to upper level,and several rainstorm center appeared.(3)In the spiral rain bands of typhoon,the big-value center of graupel particles cooperated with the warm cloud enriched with water content,and the ground would produce a center of heavy precipitation,and the precipitation center of pure warm cloud appeared in 117.5°E.This phenomenon rarely occurred during continental cloud precipitation.Therefore,the contribution of warm cloud precipitation mechanism to the typhoon spiral rain belt should be emphasized.
基金supported by the National Key R&D Project(Grant No.2021YFC3000903)the National Natural Science Foundation of China(Grant Nos.42275013,42030611,42075002)+2 种基金the CMA Innovation Foundation(Grant No.CXFZ2023J001)the Open Grants of the State Key Laboratory of Severe Weather(Grant No.2023LASW-B05)the Key Foundation of Zhejiang Provincial Department of Science and Technology(Grant No.2022C03150)。
文摘As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the example of the“21·7”extreme precipitation event(17–21 July 2021)in Henan Province,this study explores the potential of using physics-guided machine learning to improve the accuracy of forecasting the intensity and location of extreme precipitation.Three physics-guided ways of embedding physical features,fusing physical model forecasts and revised loss function are used,i.e.,(1)analyzing the anomalous circulation and thermodynamical factors,(2)analyzing the multi-model forecast bias and the associated underlying reasons for it,and(3)using professional forecasting knowledge to design the loss function,and the corresponding results are used as input for machine learning to improve the forecasting accuracy.The results indicate that by learning the relationship between anomalous physical features and heavy precipitation,the forecasting of precipitation intensity is improved significantly,but the location is rarely adjusted and more false alarms appear.Possible reasons for this are as follows.The anomalous features used here mainly contain information about large-scale systems and factors which are consistent with the model precipitation deviation;moreover,the samples of extreme precipitation are sparse and so the algorithm used here is simple.However,by combining“good and different”multi models with machine learning,the advantages of each model are extracted and then the location of the precipitation center in the forecast is improved significantly.Therefore,by combining the appropriate anomalous features with multi-model fusion,an integrated improvement of the forecast of the rainfall intensity and location is achieved.Overall,this study is a novel exploration to improve the refined forecasting of heavy precipitation with extreme intensity and high variability,and provides a reference for the deep fusion of physics and artificial intelligence methods to improve intense rain forecast.
基金Supported by the National Key Research and Development Program of China(2016YFA0601701)National Natural Science Foundation of China(42075191)National High Technology Research and Development Program of China(2012AA120902).
文摘Based on the concept of cloud water resource(CWR)and the cloud microphysical scheme developed by the Chinese Academy of Meteorological Sciences(CAMS),a coupled mesoscale and cloud-resolving model system is developed in the study for CWR numerical quantification(CWR-NQ)in North China for 2017.The results show that(1)the model system is stable and capable for performing 1-yr continuous simulation with a water budget error of less than 0.2%,which indicates a good water balance.(2)Compared with the observational data,it is confirmed that the simulating capability of the CWR-NQ approach is decent for the spatial distribution of yearly cumulative precipitation,daily precipitation intensity,yearly average spatial distribution of water vapor.(3)Compared with the CWR diagnostic quantification(CWR-DQ),the results from the CWR-NQ differ mainly in cloud condensation and cloud evaporation.However,the deviation of the net condensation(condensation minus evaporation)between the two methods is less than 1%.For other composition variables,such as water vapor advection,surface evaporation,precipitation,cloud condensation,and total atmospheric water substances,the relative differences between the CWR-NQ and the CWR-DQ are less than 5%.(4)The spatiotemporal features of the CWR in North China are also studied.The positive correlation between water vapor convergence and precipitation on monthly and seasonal scales,and the lag of precipitation relative to water vapor convergence on hourly and daily scales are analyzed in detail,indicating the significance of the state term on hourly and daily scales.The effects of different spatial scales on the state term,advection term,source-sink term,and total amount are analyzed.It is shown that the advective term varies greatly at different spatiotemporal scales,which leads to differences at different spatiotemporal scales in CWR and related characteristic quantities.
基金Supported by the National Key Research and Development Program of China(2016YFA0601701)Fengyun Application Pioneering Project(FY-APP-2021.0102)National High Technology Research and Development Program of China(2012AA120902).
文摘Identifying supercooled liquid water(SLW)in clouds is critical for weather modification,aviation safety,and atmospheric radiation calculations.Currently,aircraft identification in the SLW area mostly depends on emprical estimation of cloud particle number concentration(N_(c))in China,and scientific verification and quantitative identification criteria are urgently needed.In this study,the observations are from the Fast Cloud Droplets Probe,Rosemount ice detector(RICE),and Cloud Particle Imager(CP_(i))onboard a King Air aircraft during seven flights in 2018 and 2019 over central and eastern China.Based on this,the correlation among N_(c),the proportion of spherical particles(P_(s)),and the probability of icing(P_(i))in supercooled stratiform and cumulus-stratus clouds is statistically analyzed.Subsequently,this study proposes a method to identify SLW areas using N_(c) in combination with ambient temperature.The reliability of this method is evaluated through the true skill statistics(TSS)and threat score(TS)methods.Numerous airborne observations during the seven flights reveal a strong correlation among Nc,P_(s),and P_(i)at the temperature from 0 to−18°C.When Nc is greater than a certain threshold of 5 cm^(−3),there is always the SLW,i.e.,P_(i)and P_(s)are high.Evaluation results demonstrate that the TSS and TS values for Nc=5 cm^(−3)are higher than those for Nc<5 cm^(−3),and a larger Nc threshold(>5 cm^(−3))corresponds to a higher SLW identification hit rate and a higher SLW content.Therefore,Nc=5 cm^(−3)can be used as the minimum criterion for identifying the SLW in clouds at temperature lower than 0°C.The SLW identification method proposed in this study is especially helpful in common situations where aircraft are equipped with only Nc probes and without the CP_(i)and RICE.
基金Supported by the National Key Research and Development Program of China (2016YFE0201900-02 and 2019YFC1510304)National Natural Science Foundation of China (41575037)。
文摘This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,and the results from the high-resolution large-eddy simulation nested in the Weather Research and Forecasting(WRF)model with assimilation of satellite and radar observations.The results show that the abundant and persistent southeasterly supply of water vapor,induced by Typhoons In-Fa and Cempaka,under a particular synoptic pattern featured with abnormal northwestward displacement of the western Pacific subtropical high,was conducive to warm rain processes through a high vapor condensation rate of cloud water and an efficient collision–coalescence process of cloud water to rainwater.Such conditions were favorable for the formation and maintenance of the quasi-stationary warmsector heavy rainfall.Precipitation formation through the collision–coalescence process of cloud water to rainwater accounted for approximately 70%of the total,while the melting of snow and graupel accounted for only approximately 30%,indicating that warm cloud processes played a dominant role in this extreme rainfall event.However,enhancement of cold cloud processes promoted by latent heat release also exerted positive effect on rainfall during the period of most intense hourly rainfall.It was also found that rainwater advection from outside of Zhengzhou City played an important role in maintaining the extreme precipitation event.