Critical rainfall for flash flood early warning is a converse result of precipitation-runoffprocess based on warning discharge threshold for a warning station of interest in a watershed; the key aspects of critical ra...Critical rainfall for flash flood early warning is a converse result of precipitation-runoffprocess based on warning discharge threshold for a warning station of interest in a watershed; the key aspects of critical rainfall include rainfall amount and rainfall duration Using hydrological modeling technique with detailed sub-basin delineation and manual for design precipitation-runoff computation, this study introduces basic concept and methods of analyzing critical rainfall for flash flood early warning. Taking South Branch of Censhui watershed in China as an example, typical critical rainfalls for flash flood dynamic early warning were estimated for 3 warning stations located in the watershed. This research illustrates that detailed watershed characteristics in the context of several warning stations can be modeled in-depth by further delineating the watershed into smaller sub-basins to simulate spatial distribution of various basin parameters. It further confirms that time of concentration of a watershed is an important factor to rainfall duration determination, and the antecedent soil moisture condition of a watershed has significant impact on critical rainfall for same rainfall duration.展开更多
Approximately 99%of micro(nano)plastics in wastewater are retained in waste activated sludge,inhibiting anaerobic digestion,while their specific effects on functional microbes remain unclear.To break through the limit...Approximately 99%of micro(nano)plastics in wastewater are retained in waste activated sludge,inhibiting anaerobic digestion,while their specific effects on functional microbes remain unclear.To break through the limitations of current knowledge,in this review,we focused on summarizing the impacts of micro(nano)plastics on the microbial communities within anaerobic digestion systems,analyzing the toxicity mechanisms and developing strategies to mitigate their inhibitory effects.Firstly,the impacts of micro(nano)plastics on methane production and functional microbes were summarized,including direct cell pitting effects,inhibition caused by toxic leachates,and the adsorption of pollutants onto micro(nano)plastics surfaces,which further interfere with microbial activity and metabolic processes.Then,the specific performances and potential mechanisms by which micro(nano)plastics affect microbes were innovatively analyzed from the aspects of community variation,cellular activity and genetic expression.Moreover,various factors of micro(nano)plastics were found to influence their effects on microbes,including hormesis-like effects at different dosages,increased toxicity with decreasing particle size,enhanced biotoxicity due to surface functional groups,and variations in toxicity based on morphology and aggregation state.Furthermore,potential mitigation strategies,including activated carbon addition,thermal hydrolysis and cationic polyacrylamide application,were firstly summarized in here to alleviate inhibition on microbe.Finally,the current challenges and future directions were fully discussed and prospected.These insights could not only elucidate the biotoxic effects of micro(nano)plastics,but also provide a new avenue for helping to develop effective remediation techniques in micro(nano)plastic pollution management.展开更多
文摘Critical rainfall for flash flood early warning is a converse result of precipitation-runoffprocess based on warning discharge threshold for a warning station of interest in a watershed; the key aspects of critical rainfall include rainfall amount and rainfall duration Using hydrological modeling technique with detailed sub-basin delineation and manual for design precipitation-runoff computation, this study introduces basic concept and methods of analyzing critical rainfall for flash flood early warning. Taking South Branch of Censhui watershed in China as an example, typical critical rainfalls for flash flood dynamic early warning were estimated for 3 warning stations located in the watershed. This research illustrates that detailed watershed characteristics in the context of several warning stations can be modeled in-depth by further delineating the watershed into smaller sub-basins to simulate spatial distribution of various basin parameters. It further confirms that time of concentration of a watershed is an important factor to rainfall duration determination, and the antecedent soil moisture condition of a watershed has significant impact on critical rainfall for same rainfall duration.
基金financially sponsored by the funding from the National Key Research and Development Program of China(No.2023YFC3207404)the National Nature Science Foundation of China(No.52270034)State Key Laboratory of Urban Water Resource and Environment(No.2023TS16)。
文摘Approximately 99%of micro(nano)plastics in wastewater are retained in waste activated sludge,inhibiting anaerobic digestion,while their specific effects on functional microbes remain unclear.To break through the limitations of current knowledge,in this review,we focused on summarizing the impacts of micro(nano)plastics on the microbial communities within anaerobic digestion systems,analyzing the toxicity mechanisms and developing strategies to mitigate their inhibitory effects.Firstly,the impacts of micro(nano)plastics on methane production and functional microbes were summarized,including direct cell pitting effects,inhibition caused by toxic leachates,and the adsorption of pollutants onto micro(nano)plastics surfaces,which further interfere with microbial activity and metabolic processes.Then,the specific performances and potential mechanisms by which micro(nano)plastics affect microbes were innovatively analyzed from the aspects of community variation,cellular activity and genetic expression.Moreover,various factors of micro(nano)plastics were found to influence their effects on microbes,including hormesis-like effects at different dosages,increased toxicity with decreasing particle size,enhanced biotoxicity due to surface functional groups,and variations in toxicity based on morphology and aggregation state.Furthermore,potential mitigation strategies,including activated carbon addition,thermal hydrolysis and cationic polyacrylamide application,were firstly summarized in here to alleviate inhibition on microbe.Finally,the current challenges and future directions were fully discussed and prospected.These insights could not only elucidate the biotoxic effects of micro(nano)plastics,but also provide a new avenue for helping to develop effective remediation techniques in micro(nano)plastic pollution management.