期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Construction and application of the Synechocystis sp.PCC6803-ftnA in microbial contamination control in a coupled cultivation and wastewater treatment
1
作者 Yalei Zhang Chunmin Zhang +3 位作者 Xuefei Zhou Zheng Shen Fangchao Zhao Jianfu Zhao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第8期174-181,共8页
Inspired by iron fertilization experiments in HNLC(high-nitrate, low-chlorophyll) sea areas,we proposed the use of iron-rich engineered microalgae for microbial contaminant control in iron-free culture media. Based ... Inspired by iron fertilization experiments in HNLC(high-nitrate, low-chlorophyll) sea areas,we proposed the use of iron-rich engineered microalgae for microbial contaminant control in iron-free culture media. Based on the genome sequence and natural transformation system of Synechocystis sp. PCC6803, ftn A(encoding ferritin) was selected as our target gene and was cloned into wild-type Synechocystis sp. PCC6803. Tests at the molecular level confirmed the successful construction of the engineered Synechocystis sp. PCC6803-ftn A. After Fe3+-EDTA pulsing, the intracellular iron content of Synechocystis sp. PCC6803-ftn A was significantly enhanced, and the algae was used in the microbial contamination control system. In the coupled Synechocystis sp. PCC6803-ftn A production and municipal wastewater(MW, including Scenedesmus obliquus and Bacillus) treatment, Synechocystis sp. PCC6803-ftn A accounted for all of the microbial activity and significantly increased from 70% of the microbial community to 95%.These results revealed that while the stored iron in the Synechocystis sp. PCC6803-ftn A cells was used for growth and reproduction of this microalga in the MW, the growth of other microbes was inhibited because of the iron limitation, and these results provide a new method for microbial contamination control during a coupling process. 展开更多
关键词 Synechocystis PCC6803-ftnA Municipal wastewater treatment Microbial contaminants
原文传递
Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide 被引量:6
2
作者 Yunsi Liu Keqiang Liu +2 位作者 Michael J.Plewa Tanju Karanfil Chao Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第7期151-160,共10页
Algal blooms and wastewater effluents can introduce algal organic matter(AOM) and effluent organic matter(Ef OM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of h... Algal blooms and wastewater effluents can introduce algal organic matter(AOM) and effluent organic matter(Ef OM) into surface waters, respectively. In this study, the impact of bromide and iodide on the formation of halogenated disinfection byproducts(DBPs) during chlorination and chloramination from various types of dissolved organic matter(DOM, e.g., natural organic matter(NOM), AOM, and Ef OM) were investigated based on the data collected from literature. In general, higher formation of trihalomethanes(THMs) and haloacetic acids(HAAs) was observed in NOM than AOM and Ef OM, indicating high reactivities of phenolic moieties with both chlorine and monochloramine. The formation of haloacetaldehydes(HALs), haloacetonitriles(HANs) and haloacetamides(HAMs) was much lower than THMs and HAAs. Increasing initial bromide concentrations increased the formation of THMs, HAAs, HANs, and HAMs, but not HALs. Bromine substitution factor(BSF) values of DBPs formed in chlorination decreased as specific ultraviolet absorbance(SUVA) increased. AOM favored the formation of iodinated THMs(I-THMs) during chloramination using preformed chloramines and chlorination-chloramination processes. Increasing prechlorination time can reduce the I-THM concentrations because of the conversion of iodide to iodate, but this increased the formation of chlorinated and brominated DBPs. In an analogous way, iodine substitution factor(ISF) values of I-THMs formed in chloramination decreased as SUVA values of DOM increased. Compared to chlorination, the formation of noniodinated DBPs is low in chloramination. 展开更多
关键词 Disinfection byproducts Natural organic matter Algal organic matter Effluent organic matter BROMIDE IODIDE CHLORINATION CHLORAMINATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部