期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
从稀疏到结构化稀疏:贝叶斯方法
被引量:
28
1
作者
孙洪
张智林
余磊
《信号处理》
CSCD
北大核心
2012年第6期759-773,共15页
稀疏分解算法是稀疏表达理论和压缩感知理论中的核心问题,也是当前信号处理领域的一个热门话题。近年来,研究人员发现除了稀疏以外,如果引入稀疏系数之间的相关性先验信息,可以大大提高稀疏分解算法的精度,这种方法称为"结构化稀...
稀疏分解算法是稀疏表达理论和压缩感知理论中的核心问题,也是当前信号处理领域的一个热门话题。近年来,研究人员发现除了稀疏以外,如果引入稀疏系数之间的相关性先验信息,可以大大提高稀疏分解算法的精度,这种方法称为"结构化稀疏分解算法"。本文归纳和总结了从稀疏到结构化稀疏的信号模型,并且介绍了两种不同的贝叶斯稀疏(或者结构化稀疏)算法,以及从稀疏到结构化稀疏贝叶斯稀疏分解算法的扩展。同时,本文还介绍了结构化稀疏分解算法在医学信号处理和语音信号处理中的应用。
展开更多
关键词
压缩感知
稀疏理论
结构化稀疏分解算法
贝叶斯压缩感知
在线阅读
下载PDF
职称材料
题名
从稀疏到结构化稀疏:贝叶斯方法
被引量:
28
1
作者
孙洪
张智林
余磊
机构
武汉大学电子信息学院
Dept.Electrical and Comp
u
ter Engineering
visages u
出处
《信号处理》
CSCD
北大核心
2012年第6期759-773,共15页
文摘
稀疏分解算法是稀疏表达理论和压缩感知理论中的核心问题,也是当前信号处理领域的一个热门话题。近年来,研究人员发现除了稀疏以外,如果引入稀疏系数之间的相关性先验信息,可以大大提高稀疏分解算法的精度,这种方法称为"结构化稀疏分解算法"。本文归纳和总结了从稀疏到结构化稀疏的信号模型,并且介绍了两种不同的贝叶斯稀疏(或者结构化稀疏)算法,以及从稀疏到结构化稀疏贝叶斯稀疏分解算法的扩展。同时,本文还介绍了结构化稀疏分解算法在医学信号处理和语音信号处理中的应用。
关键词
压缩感知
稀疏理论
结构化稀疏分解算法
贝叶斯压缩感知
Keywords
Compressive Sensing
Sparsity
Structured sparse decomposition algorithms
Bayesian Compressive Sensing
分类号
TN911.7 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
从稀疏到结构化稀疏:贝叶斯方法
孙洪
张智林
余磊
《信号处理》
CSCD
北大核心
2012
28
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部