期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Identification and molecular marker development for peel color gene in melon(Cucumis melo L.) 被引量:1
1
作者 Jian Ma Guoliang Yuan +4 位作者 Xinyang Xu Haijun Zhang Yanhong Qiu Congcong Li Huijun Zhang 《Journal of Integrative Agriculture》 2025年第7期2589-2600,共12页
Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel... Peel color is an important appearance quality of melons that significantly affects consumer preferences.In this study,a near-isogenic line NIL-G(dark green peel)was generated from B8(grey-green peel)and B15(white peel).The F_2 population constructed by crossing NIL-G and B15 was used to study the inheritance pattern of peel color,and bulked-segregant analysis sequencing(BSA-seq)was employed to identify the interval in which the target gene was located.Genetic analysis showed that a dominant gene controls the dark green peel trait at maturity.BSAseq and molecular markers were used to localize the candidate gene in a 263.7 kb interval of chromosome 4,which contained the CmAPRR2 gene with known functions.Moreover,allelic sequence analysis revealed four SNP variations of the CmAPRR2 gene in B15,of which SNP.G614331A was located at the junction of the 6th exon and 6th intron.The G-to-A mutation caused alternative splicing of the transcript of CmAPRR2 in B15,generating two transcripts(CmAPRR2-A and CmAPRR2-B)with premature termination codons.Furthermore,the Kompetitive Allele Specific PCR(KASP)marker,APRR2-G/A,was developed based on this SNP and shown to co-segregate with the peel color phenotype in the F_(2) population.Compared to white-peel B15,the expression level of CmAPRR2 in dark green peel NIL-G was higher at each growth stage.Therefore,CmAPRR2 may be the key gene controlling the fruit color of melons.This study identified a novel allelic variant of CmAPRR2 that leads to white peel formation in mature melons.We also provides a theoretical basis for further research on the gene regulatory mechanism of melon peel colors,which promotes using molecular marker-assisted selection to modify melon peel colors in the future. 展开更多
关键词 MELON BSA-seq MAPPING CmAPRR2 peel color KASP marker
在线阅读 下载PDF
Genome assembly of the plant pathogen Plasmodiophora brassicae reveals novel secreted proteins contributing to the infection of Brassica rapa
2
作者 Peirong Li Sirui Lv +11 位作者 Zhijun Zhang Tongbing Su Weihong Wang Xiaoyun Xin Xiuyun Zhao Xiaoman Li Deshuang Zhang Yangjun Yu Tao Ma Guodong Liu Fenglan Zhang Shuancang Yu 《Horticultural Plant Journal》 2025年第3期1125-1139,共15页
The soil-resident pathogen, Plasmodiophora brassicae, infects cruciferous crops, causing obligate parasitic clubroot disease and posing a significant threat to the Brassica vegetable industry in China. To learn more a... The soil-resident pathogen, Plasmodiophora brassicae, infects cruciferous crops, causing obligate parasitic clubroot disease and posing a significant threat to the Brassica vegetable industry in China. To learn more about its pathogenesis, we reported a Nanopore sequencing-derived25.3 Mb high-quality genome sequence of P. brassicae pathotype 4 strain(P.b 4). Comparing the P.b 4 genome with that of the published P.brassicae e3 genome(P.b e3) identified single nucleotide polymorphisms, structural variations, and small insertions and deletions. We then carried out RNA-sequencing of root samples from a clubroot-susceptible line at 5, 14, and 28 days after inoculation(DAI), and classified genes into five categories based on their expression patterns. Interestingly, 158 genes were highly expressed at 14 DAI, which were enriched in budding cell isotropic bud growth, ascospore wall assembly, spore wall assembly, spore wall biogenesis, and ascospore wall biogenesis.Subsequently, we bioinformatically predicted 555 secreted effector candidates, among which only 125 were expressed during infection and had amino acid lengths less than 400. The putative effector Pb010018, which was highly expressed at 14 DAI, was validated to have a signal peptide using a yeast secretion system. Luciferase activity and co-immunoprecipitation assays demonstrated that Pb010018 interacts with serine hydroxymethyltransferase BrSHMT1, and expression analysis showed that SHMT1 was upregulated in both Arabidopsis and B. rapa during infection. Furthermore, after infection, the Arabidopsis shmt1 mutant(atshmt1) showed reduced severity of clubroot disease, together with downregulated expression of Pb010018. Our results offer new insights into plant-pathogen interaction mechanisms, and provide the possibility for improving Brassica resistance to clubroot disease. 展开更多
关键词 Plasmodiophora brassicae CLUBROOT Brassica rapa GENOME Secreted protein Serine hydroxymethyltransferase
在线阅读 下载PDF
Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber 被引量:12
3
作者 HU Li-ping ZHANG Feng +5 位作者 SONG Shu-hui TANG Xiao-wei XU Hui LIU Guang-min WANG Ya-qin HE Hong-ju 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第7期1486-1501,共16页
SWEETs (sugars will eventually be exported transporters) are a novel class of recently identified sugar transporters that play important roles in diverse physiological processes. However, only a few species of the p... SWEETs (sugars will eventually be exported transporters) are a novel class of recently identified sugar transporters that play important roles in diverse physiological processes. However, only a few species of the plant SWEETgene family have been functionally identified. Up till now, there has been no systematic analysis of the SWEETgene family in Cucurbitaceae crops. Here, a genome-wide characterization of this family was conducted in cucumber(Cucumis sativus L.). A total of 17 CsSWEETgenes were identified, which are not evenly distributed over the seven cucumber chromosomes. Cucumber SWEET protein sequences possess seven conserved domains and two putative serine phosphorylation sites. The phylo- genetic tree of the SWEET genes in cucumber, Arabidopsis thaliana, and Oryza sativa was constructed, and all the SWEET genes were divided into four clades. In addition, a number of putative cis-elements were identified in the promoter regions of these CsSWEET genes: nine types involved in phytohormone responses and eight types involved in stress responses. Moreover, the transcript levels of CsSWEETgenes were analyzed in various tissues using quantitative real-time polymerase chain reaction. A majority (70.58%) of the CsSWEET genes were confined to reproductive tissue development. Finally, 18 putative watermelon ClaSWEETgenes and 18 melon CmSWEETgenes were identified that showed a high degree of similarity with CsSWEETgenes. The results from this study provided a basic understanding of the CsSWEETgenes and may also facilitate future research to elucidate the function of SWEET genes in cucumber and other Cucurbitaceae crops. 展开更多
关键词 CUCUMBER gene expression phylogenetic analysis sugar transporter SWEET WATERMELON
在线阅读 下载PDF
Effects of fresh-cut and storage on glucosinolates profile using broccoli as a case study 被引量:9
4
作者 Xiaoxin Huang Bing Cheng +4 位作者 Yaqin Wang Guangmin Liu Liping Hu Xiaolu Yu Hongju He 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第2期285-292,共8页
Glucosinolates(GLS) contribute to the unique flavour, nutrition, and plant defence of the Cruciferous vegetables. Understanding the GLS changes through postharvest processing is essential for defined preservation. In ... Glucosinolates(GLS) contribute to the unique flavour, nutrition, and plant defence of the Cruciferous vegetables. Understanding the GLS changes through postharvest processing is essential for defined preservation. In this study, four different fresh-cut types, whole flower(W),floret(F), quarterly cut floret(QF) and shredded floret(FS) of broccoli, were stored for 0, 1, 2 and 3 day(s) to explore GLS responses to postharvest treatments. As a result, seven GLS were identified, mainly including glucoraphanin(RAA), neoglucobrassicin(NEO), and glucobrassicin(GBC)and accounting for 52.69%, 20.12% and 14.99% of the total GLS(21.92 ± 0.48) μmol · g ^(-1 )DW, respectively. FS had the sharpest decrease in GLS after three days of storage(6.55 ± 0.37) μmol · g-1DW, while QF had the least(10.16 ± 0.33) μmol · g ^(-1 )DW. All GLS components decreased over storage, except for 4-methoxyglucobrassicin(4 ME) in FS and QF, suggesting its key role in serious wound defence. The results suggested certain postharvest approaches influenced the flavour and nutrition of broccoli. 展开更多
关键词 Cruciferous vegetables BROCCOLI GLUCOSINOLATE Wound stress STORAGE FRESH-CUT
在线阅读 下载PDF
Efficient generation of targeted point mutations in the Brassica oleracea var.botrytis genome via a modified CRISPR/Cas9 system 被引量:6
5
作者 Guixiang Wang Mei Zong +7 位作者 Di Liu Yage Wu Shouwei Tian Shuo Han Ning Guo Mengmeng Duan Liming Miao Fan Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2022年第4期527-530,共4页
In this study,we used the modified CRISPR/Cas9 system to produce targeted point mutations in cauliflower.Acetolactate synthase(ALS)and Centromere-specific histone H3 variant(CENH3)genes were selected as the base-editi... In this study,we used the modified CRISPR/Cas9 system to produce targeted point mutations in cauliflower.Acetolactate synthase(ALS)and Centromere-specific histone H3 variant(CENH3)genes were selected as the base-editing targets and hypocotyls of cauliflower were used as explants.For ALS gene,a C-to-T conversion in the Pro182 codon(CCT)can alter the encoded amino acid,likely resulting in herbicide resistance,and a C-to-T mutation in the Leu133 codon(CTT)in the CENH3 gene may produce a haploid inducer.Results indicated that the transformation efficiency was 1.8%–4.5%and the mutation efficiencies for the ALS and CENH3 genes were approximately 22%and 87%,respectively.The ALS mutant cauliflower showed strong herbicide resistance,with possible immediate implications for broadleaf weed control in cauliflower fields. 展开更多
关键词 CAULIFLOWER Targeted point mutations Base-editing CRISPR/Cas9 ALS CENH3
在线阅读 下载PDF
Evaluation of Maturity and Flavor of Melons Using an Electronic Nose 被引量:8
6
作者 TANG Xiao-wei HE Hong-ju +1 位作者 GENG Li-hua ZHANG Wan-qing 《Agricultural Science & Technology》 CAS 2011年第3期447-450,共4页
In this work,an electronic nose was used to evaluate the different cultivars and mature stages of melons,so as to establish a scientific method to accurately distinguish the maturity and varieties of melons. Principal... In this work,an electronic nose was used to evaluate the different cultivars and mature stages of melons,so as to establish a scientific method to accurately distinguish the maturity and varieties of melons. Principal component analysis (PCA) and linear discriminant analysis (LDA ) showed that immature melons could be well distinguished from mature melons using electronic nose. When PCA method was used to analyze,electronic nose could completely classify and identify the maturity of melons. Meanwhile,the electronic nose could distinguish different varieties of melons with high discrimination value. The flavor of samples under cut or no cut conditions would slightly change,leading to the variation of discrimination value among different varieties. The samples with similar flavor under no cut condition could be analyzed through cutting mode. The research built a rapid and accurate method to judge the maturity of melons instead of man sense. 展开更多
关键词 MELON MATURITY FLAVOR Electronic nose
在线阅读 下载PDF
Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system 被引量:24
7
作者 Lei Deng Hang Wang +5 位作者 Chuanlong Sun Qian Li Hongling Jiang Minmin Du Chang-Bao Li Chuanyou Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2018年第1期51-54,共4页
Tomato (Solanum lycopersicum) is the leading vegetable crop worldwide and an essential component of a healthy diet (Lin et al., 2014; Du et al., 2017). Fruit color is regarded as one of the most important commercial t... Tomato (Solanum lycopersicum) is the leading vegetable crop worldwide and an essential component of a healthy diet (Lin et al., 2014; Du et al., 2017). Fruit color is regarded as one of the most important commercial traits in tomato (The Tomato Genome Consortium, 2012). Consumers in different regions have different color preferences. For example, European and American consumers prefer red tomatoes, while pink tomatoes are more pop- ular in Asia countries, particularly in China and Japan (Ballester et al., 2010; Lin et al., 2014). However, most of tomato breeding ma- terials are red-fruited, thus the generation of pink-fruited materials is very important for Asian tomato production. Metabolomics and genetics studies demonstrate that the pink trait results from the absence of yellow-colored flavonoid naringenin chalcone (NarCh) in the peels,and is controlled by the monogenic recessive yellow(y)lOCUS(Adato et a1..2009;Ballester et a1..2OLO). 展开更多
关键词 Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system CR
原文传递
Comparison of DUS testing and SNP fingerprinting for variety identification in cucumber 被引量:7
8
作者 Jian Zhang Jingjing Yang +6 位作者 Shenzao Fu Jun Ren XiaoFei Zhang Changxuan Xia Hong Zhao Kun Yang Changlong Wen 《Horticultural Plant Journal》 SCIE CAS CSCD 2022年第5期575-582,共8页
Variety identification plays an important role in protecting the intellectual property of varieties,ensuring seed quality,and encouraging breeding innovation.Currently,morphological evaluation in the field,such as dis... Variety identification plays an important role in protecting the intellectual property of varieties,ensuring seed quality,and encouraging breeding innovation.Currently,morphological evaluation in the field,such as distinctness,uniformity,and stability(DUS)testing,and DNA fingerprinting in the laboratory using molecular markers are two dominant methods used for variety identification.Few studies have compared the results of these approaches,and the relationship between the two methods is obscure.In this study,134 dominant cucumber varieties were evaluated using 50 DUS testing traits and genotyped by 40 single nucleotide polymorphisms(SNPs).The 40 SNPs were developed in our previous study and arewell suited for variety identification.In the DUS testing,significant positive or negative correlations among 50 DUS traits were observed,and 20 core traits,including 15 fruit traits,were further selected to increase field inspection efficiency.This suggested that fruit shape plays an important role in variety identification.The ratio of fruit length/diameter was themost important trait,explaining 9.2%of the phenotypic variation.In the DNA fingerprinting test,the 40 SNPs were highly polymorphic and could distinguish all of the 134 cucumber varieties,and 14 core SNPs were selected to improve the identification rate.Interestingly,the population structure analysis of 134 cucumber varieties by phenotypic data in the DUS test was in accordance with the genotypic data from the DNA fingerprinting,indicating that all varieties could be divided into the same four subgroups:European type,North China type,South China type,and hybrids of the North China and South China types.Moreover,linear correlativity of distinguishment for each pair of varieties was observed between the DUS test and the DNA fingerprinting.These results indicated that these two methods have good application in future research,especially for the scaled-up analysis of hundreds of varieties. 展开更多
关键词 CUCUMBER DUS test SNP fingerprinting Variety identification
在线阅读 下载PDF
Genetic relationship and pedigree of Chinese watermelon varieties based on diversity of perfect SNPs 被引量:6
9
作者 Jingjing Yang Jian Zhang +7 位作者 Hushan Du Hong Zhao Aijun Mao Xiaofei Zhang Luo Jiang Haiying Zhang Changlong Wen Yong Xu 《Horticultural Plant Journal》 SCIE CAS CSCD 2022年第4期489-498,共10页
Watermelon(Citrullus lanatus)is one of the world’s most important fruit crops,and China produces the most watermelons in the world.Recently,a watermelon variome consisting of 414 key resequenced accessions was report... Watermelon(Citrullus lanatus)is one of the world’s most important fruit crops,and China produces the most watermelons in the world.Recently,a watermelon variome consisting of 414 key resequenced accessions was reported.However,the genetic relationships and pedigree of Chinese watermelon varieties in the seed market remain unclear.In this study,241 evenly distributed perfect single nucleotide polymorphisms(SNPs)derived from the watermelon variome were selected for variety identification.The diversity of 247 Chinese watermelon varieties was identified based on their SNP genotypes.The 247 watermelon varieties were clustered into five subpopulations:the East Asian ecotype,intermediate ecotype,small fruit with red flesh ecotype,small fruit with yellow flesh ecotype,and American ecotype.We further established the pedigree of four subpopulations,of which JingXinNo.1,ZaoChunHongYu,HuangXiaoYu and XiaoLan,and Sugarlee were the main doner of the East Asian ecotype,small fruit with red flesh ecotype,small fruit with yellow flesh ecotype,and American ecotype,respectively.Thirty-two core SNPs were selected and applied in watermelon variety identification.They were also validated by the Kompetitive allele-specific PCR(KASPar)platform.The present study furthered our understanding of the genetic relationships and pedigree of watermelon varieties in China,and will help to manage the plant variety protection in watermelon. 展开更多
关键词 WATERMELON Perfect SNP Genetic relationship PEDIGREE Variety identification
在线阅读 下载PDF
Rapid breeding of pink-fruited tomato hybrids using the CRISPR/Cas9 system 被引量:12
10
作者 Tianxia Yang Lei Deng +5 位作者 Wei Zhao Ruoxi Zhang Hongling Jiang Zhibiao Ye Chang-Bao Li Chuanyou Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2019年第10期505-508,共4页
As one of the most important vegetables,tomato (Solanum lycopersicum) is extensively produced and consumed worldwide and substantially contributes to human nutrition and health (The Tomato Genome Consortium,2012).Alth... As one of the most important vegetables,tomato (Solanum lycopersicum) is extensively produced and consumed worldwide and substantially contributes to human nutrition and health (The Tomato Genome Consortium,2012).Although red tomatoes are the most common,pink tomatoes are more popular in Asia,particularly in China and Japan,because of their better taste (Ballester et al.,2010;Zhu et al.,2018).Compared with red tomatoes,pink tomatoes fail to accumulate the yellow-colored flavonoid pigment,naringenin chalcone (NarCh),in their peels,resulting in a colorless peel phenotype (Adato et al,2009;Ballester et al.,2010). 展开更多
关键词 CRISPR/Cas9 BREEDING COLORED
原文传递
Creating burdock polysaccharide-oleanolic acid-ursolic acid nanoparticles to deliver enhanced anti-inflammatory effects:fabrication,structural characterization and property evaluation 被引量:7
11
作者 Shanshan Zhu Zhichang Qiu +5 位作者 Xuguang Qiao Geoffrey I.N.Waterhouse Wenqing Zhu Wenting Zhao Qiuxia He Zhenjia Zheng 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期454-466,共13页
This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encaps... This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules. 展开更多
关键词 ENCAPSULATION Structural features Particle size Zeta potential Thermodynamic properties In vivo verification
在线阅读 下载PDF
Inhibitory effect of chitosan on growth of the fungal phytopathogen,Sclerotinia sclerotiorum,and sclerotinia rot of carrot 被引量:3
12
作者 WANG Qing ZUO Jin-hua +2 位作者 WANG Qian NA Yang GAO Li-pu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第4期691-697,共7页
The antifungal activity of chitosan on a common fungal phytopathogen, Sclerotinia sclerotiorum, and the control effect on sclerotinia rot of carrot were investigated. Mycelial growth and fungal biomass were strongly i... The antifungal activity of chitosan on a common fungal phytopathogen, Sclerotinia sclerotiorum, and the control effect on sclerotinia rot of carrot were investigated. Mycelial growth and fungal biomass were strongly inhibited by chitosan. Using propidium iodide stain combined with fluorescent microscopy, the plasma membrane of chitosan-treated S. sclerotiorum mycelia was observed to be markedly damaged. Concomitantly, protein leakage and lipid peroxidation was also found to be significantly higher in chitosan-treated mycelia compared to the control. Chitosan provided an effective control of sclerotinia rot of carrot, with induction of activity of defense-related enzymes including polyphenoloxidase and peroxidase. These data suggest that the effects of chitosan on sclerotinia rot of carrot may be associated with the direct damage to the plasma membrane and lipid peroxidation of S. sclerotiorum, and the elicitation of defense response in carrot. 展开更多
关键词 antifungal activity CARROT CHITOSAN plasma membrane Sclerotinia sclerotiorum
在线阅读 下载PDF
Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage 被引量:4
13
作者 Bin Zhang Tongbing Su +9 位作者 Peirong Li Xiaoyun Xin Yunyun Cao Weihong Wang Xiuyun Zhao Deshuang Zhang Yangjun Yu Dayong Li Shuancang Yu Fenglan Zhang 《Horticulture Research》 SCIE 2021年第1期537-551,共15页
Brassica downy mildew,a severe disease caused by Hyaloperonospora brassicae,can cause enormous economic losses in Chinese cabbage(Brassica rapa L.ssp.pekinensis)production.Although some research has been reported rece... Brassica downy mildew,a severe disease caused by Hyaloperonospora brassicae,can cause enormous economic losses in Chinese cabbage(Brassica rapa L.ssp.pekinensis)production.Although some research has been reported recently concerning the underlying resistance to this disease,no studies have identified or characterized long noncoding RNAs involved in this defense response.In this study,using high-throughput RNA sequencing,we analyzed the disease-responding mRNAs and long noncoding RNAs in two resistant lines(T12–19 and 12–85)and one susceptible line(91–112).Clustering and Gene Ontology analysis of differentially expressed genes(DEGs)showed that more DEGs were involved in the defense response in the two resistant lines than in the susceptible line.Different expression patterns and proposed functions of differentially expressed long noncoding RNAs among T12–19,12–85,and 91–112 indicated that each has a distinct disease response mechanism.There were significantly more cis-and trans-functional long noncoding RNAs in the resistant lines than in the susceptible line,and the genes regulated by these RNAs mostly participated in the disease defense response.Furthermore,we identified a candidate resistance-related long noncoding RNA,MSTRG.19915,which is a long noncoding natural antisense transcript of a MAPK gene,BrMAPK15.Via an agroinfiltration-mediated transient overexpression system and virus-induced gene silencing technology,BrMAPK15 was indicated to have a greater ability to defend against pathogens.MSTRG.19915-silenced seedlings showed enhanced resistance to downy mildew,probably because of the upregulated expression of BrMAPK15.This research identified and characterized long noncoding RNAs involved in resistance to downy mildew,laying a foundation for future in-depth studies of disease resistance mechanisms in Chinese cabbage. 展开更多
关键词 RESISTANCE mostly concerning
原文传递
Application of droplet digital PCR in detection of seed-transmitted pathogen Acidovorax citrulli 被引量:3
14
作者 LU Yu ZHANG Hai-jun +6 位作者 ZHAO Zi-jing WEN Chang-long WU Ping SONG Shun-hua YU Shuan-cang Luo Lai-xin XU Xiu-lan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第2期561-569,共9页
Bacterial fruit blotch caused by Acidovorax citrulli is a serious threat to cucurbit industry worldwide.The pathogen is seedtransmitted,so seed detection to prevent distribution of contaminated seed is crucial in dise... Bacterial fruit blotch caused by Acidovorax citrulli is a serious threat to cucurbit industry worldwide.The pathogen is seedtransmitted,so seed detection to prevent distribution of contaminated seed is crucial in disease management.In this study,we adapted a quantitative real-time PCR(qPCR)assay to droplet digital PCR(ddPCR)format for A.citrulli detection by optimizing reaction conditions.The performance of ddPCR in detecting A.citrulli pure culture,DNA,infested watermelon/melon seed and commercial seed samples were compared with multiplex PCR,qPCR,and dilution plating method.The lowest concentrations detected(LCD)by ddPCR reached up to 2 fg DNA,and 102 CFU mL–1 bacterial cells,which were ten times more sensitive than those of the qPCR.When testing artificially infested watermelon and melon seed,0.1%infestation level was detectable using ddPCR and dilution plating method.The 26 positive samples were identified in 201 commercial seed samples through ddPCR,which was the highest positive number among all the methods.High detection sensitivity achieved by ddPCR demonstrated a promising technique for improving seed-transmitted pathogen detection threshold in the future. 展开更多
关键词 bacterial fruit blotch Acidovorax citrulli droplet digital PCR seed detection quantitative real-time PCR
在线阅读 下载PDF
Association of BrERF72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes 被引量:17
15
作者 Xiao-li Tan Zhong-qi Fan +4 位作者 Wei Shan Xue-ren Yin Jian-fei Kuang Wang-jin Lu Jian-ye Chen 《Horticulture Research》 SCIE 2018年第1期641-651,共11页
The ethylene response factor(ERF)and phytohormone jasmonate(JA)are reported to function in leaf senescence.The involvement of ERF in JA-mediated leaf senescence,however,needs to be elucidated.In the present work,we de... The ethylene response factor(ERF)and phytohormone jasmonate(JA)are reported to function in leaf senescence.The involvement of ERF in JA-mediated leaf senescence,however,needs to be elucidated.In the present work,we demonstrate a Chinese flowering cabbage ERF transcription factor(TF),BrERF72,that is associated with JA-promoted leaf senescence.Exogenous application of methyl jasmonate(MeJA)-accelerated leaf senescence of Chinese flowering cabbage,evidenced by the data that MeJA treatment led to the stronger reduction in the maximum quantum yield(Fv/Fm),photosynthetic electron transport rate(ETR),and total chlorophyll content,while significant induction in the expression of several senescence-associated genes(SAGs)including BrSAG12,BrSAG19,and chlorophyll catabolic genes(CCGs)BrPAO1,BrNYC1,BrPPH1,and BrSGR1.Increases in levels of endogenous JA and transcripts of JA biosynthetic genes BrLOX4,BrAOC3,and BrOPR3 were also found after MeJA treatment.BrERF72 was a MeJA-inducible,nucleus-localized protein,and possessed trans-activation ability.Transient overexpression of BrERF72 in tobacco leaves also promoted leaf senescence.More importantly,further experiments revealed that BrERF72 directly activated expression of BrLOX4,BrAOC3,and BrOPR3 through binding to their promoters via the GCC or DRE/CRT cis-element.Together,the novel JA-ERF association reported in our study uncovers a new insight into the transcriptional regulation of JA production mediated by ERF during JA-promoted leaf senescence in Chinese flowering cabbage. 展开更多
关键词 ERF SENESCENCE TOGETHER
原文传递
MiR396 is involved in plant response to vernalization and flower development in Agrostis stolonifera 被引量:3
16
作者 Shuangrong Yuan Zhigang Li +5 位作者 Ning Yuan Qian Hu Man Zhou Junming Zhao Dayong Li Hong Luo 《Horticulture Research》 SCIE 2020年第1期380-393,共14页
MicroRNA396(miR396)has been demonstrated to regulate flower development by targeting growth-regulating factors(GRFs)in annual species.However,its role in perennial grasses and its potential involvement in flowering ti... MicroRNA396(miR396)has been demonstrated to regulate flower development by targeting growth-regulating factors(GRFs)in annual species.However,its role in perennial grasses and its potential involvement in flowering time control remain unexplored.Here we report that overexpression of miR396 in a perennial species,creeping bentgrass(Agrostis stolonifera L.),alters flower development.Most significantly,transgenic(TG)plants bypass the vernalization requirement for flowering.Gene expression analysis reveals that miR396 is induced by long-day(LD)photoperiod and vernalization.Further study identifies VRN1,VRN2,and VRN3 homologs whose expression patterns in wild-type(WT)plants are similar to those observed in wheat and barley during transition from short-day(SD)to LD,and SD to cold conditions.However,compared to WT controls,TG plants overexpressing miR396 exhibit significantly enhanced VRN1 and VRN3 expression,but repressed VRN2 expression under SD to LD conditions without vernalization,which might be associated with modified expression of methyltransferase genes.Collectively,our results unveil a potentially novel mechanism by which miR396 suppresses the vernalization requirement for flowering which might be related to the epigenetic regulation of VRN genes and provide important new insight into critical roles of a miRNA in regulating vernalization-mediated transition from vegetative to reproductive growth in monocots. 展开更多
关键词 FLOWER CREEP VERNALIZATION
原文传递
Experimental study on freezing of liquids under static magnetic field 被引量:6
17
作者 Hongxia Zhao Feng Zhang +2 位作者 Hanqing Hu Sheng Liu Jitian Han 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1288-1293,共6页
Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and colle... Freezing processes of several liquids under static magnetic field(SMF) less than 50 mT were investigated. Central temperature of liquid samples held in glass test tubes immersed in a liquid bath was measured and collected. Nucleation temperature and phase transition time were obtained from freezing curves. Normality tests were performed for nucleation temperature of these liquids with/without magnetic field and normality distributions were justified. Analysis of variances was carried out for nucleation temperature of these liquids with magnetic field flux density as the influencing factor. Results showed that no significant difference was found for deionized water with or without SMF. However, differences exist in 0.9% NaCl solution and 5% ethylene glycol solution with and without SMF. Nucleation temperature of 0.9% NaCl with SMF is lower than that without SMF, while its phase transition time is shorter than that without SMF. Nucleation temperature of 5% ethylene glycol with SMF is higher than that without SMF, while its phase transition time is not modified with SMF. 展开更多
关键词 Liquid Freezing Static magnetic field Nucleation temperature Phase transition time
在线阅读 下载PDF
Transcriptomics and metabolomics analyses provide insights into postharvest ripening and senescence of tomato fruit under low temperature 被引量:6
18
作者 Chunmei Bai Caie Wu +11 位作者 Lili Ma Anzhen Fu Yanyan Zheng Jiawei Han Changbao Li Shuzhi Yuan Shufang Zheng Lipu Gao Xinhua Zhang Qing Wang Demei Meng Jinhua Zuo 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第1期109-121,共13页
Tomato is one of the most important vegetable crops in the world and is a model plant used to study the ripening of climacteric fleshy fruit.During the ripening process of tomato fruit,flavor and aroma metabolites,col... Tomato is one of the most important vegetable crops in the world and is a model plant used to study the ripening of climacteric fleshy fruit.During the ripening process of tomato fruit,flavor and aroma metabolites,color,texture and plant hormones undergo significant changes.However,low temperatures delayed the ripening process of tomato fruit,inhibiting flavor compounds and ethylene production.Metabolomics and transcriptomics analyses of tomato fruit stored under low temperature(LT,5°C)and room temperature(RT,25°C)were carried out to investigate the effects of storage temperature on the physiological changes in tomato fruit after harvest.The results of transcriptomics changes revealed that the differentially expressed genes(DEGs)involved in tomato fruit ripening,including several kinds of transcription factors(TFs)(TCP,WRKY,MYB and bZIP),enzymes involved in cell wall metabolism[beta-galactosidase(β-GAL),pectinesterase(PE)and pectate lyase(PL),cellulose and cellulose synthase(CESA)],enzymes associated with fruit flavor and aroma[acetyltransferase(AT),malic enzyme(ME),lipoxygenase(LOX),aldehyde dehydrogenase(ALDH),alcohol dehydrogenase(ADH)and hexokinase(HK)],genes associated with heat stress protein 70 and genes involved in the production of plant hormones such as Ethylene responsive factor 1(ERF1),Auxin/indoleacetic acids protein(AUX/IAA),gibberellin regulated protein.Based on the above results,we constructed a regulatory network model of the effects of different temperatures during the fruit ripening process.According to the analysis of the metabolomics results,it was found that the contents of many metabolites in tomato fruit were greatly affected by storage temperature,including,organic acids(L-tartaric acid,a-hydroxyisobutyric acid and 4-acetamidobutyric acid),sugars(melezitose,beta-Dlactose,D-sedoheptulose 7-phosphate,2-deoxyribose 1-phosphate and raffinose)and phenols(coniferin,curcumin and feruloylputrescine).This study revealed the effects of storage temperature on postharvest tomato fruit and provided a basis for further understanding of the molecular biology and biochemistry of fruit ripening. 展开更多
关键词 Metabolomics TOMATO TRANSCRIPTOMICS TEMPERATURE Fruit ripening
在线阅读 下载PDF
Combined genomic, transcriptomic, and metabolomic an alyses provide in sights into chayote (Sechium edule) evolution and fruit development 被引量:13
19
作者 Anzhen Fu Qing Wang +12 位作者 Jianlou Mu Lili Ma Changlong Wen Xiaoyan Zhao Lipu Gao Jian Li Kai Shi Yunxiang Wang Xuechuan Zhang Xuewen Zhang Fengling Wang Donald Grierson Jinhua Zuo 《Horticulture Research》 SCIE 2021年第1期250-264,共15页
Chayote(Sechium edule)is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components.To enhance genetic research on chayote,we used Nanopore third-generation sequencing combined with Hi-C dat... Chayote(Sechium edule)is an agricultural crop in the Cucurbitaceae family that is rich in bioactive components.To enhance genetic research on chayote,we used Nanopore third-generation sequencing combined with Hi-C data to assemble a draft chayote genome.A chromosome-level assembly anchored on 14 chromosomes(N50 contig and scaffold sizes of 8.40 and 46.56 Mb,respectively)estimated the genome size as 606.42 Mb,which is large for the Cucurbitaceae,with 65.94%(401.08 Mb)ofthe genome comprising repetitive sequences;28,237 protein-coding genes were predicted.Comparative genome analysis indicated that chayote and snake gourd diverged from sponge gourd and that a whole-genome duplication(WGD)event occurred in chayote at 25±4 Mya.Transcriptional and metabolic analysis revealed genes involved in fruit texture,pigment,fl avor,fl avonoids,antioxidants,and plant hormones during chayote fruit development.The analysis of the genome,transcriptome,and metabolome provides insights into chayote evolution and lays the groundwork for future research on fruit and tuber development and genetic improvements in chayote. 展开更多
关键词 EVOLUTION SPONGE fruit
原文传递
Genome-wide analysis of changes in miRNA and target gene expression reveals key roles in heterosis for chinese cabbage biomass 被引量:2
20
作者 Peirong Li Tongbing Su +6 位作者 Deshuang Zhang Weihong Wang Xiaoyun Xin Yangjun Yu Xiuyun Zhao Shuancang Yu Fenglan Zhang 《Horticulture Research》 SCIE 2021年第1期731-745,共15页
Heterosis is a complex phenomenon in which hybrids show better phenotypic characteristics than their parents do.Chinese cabbage(Brassica rapa L.spp.pekinensis)is a popular leafy crop species,hybrids of which are widel... Heterosis is a complex phenomenon in which hybrids show better phenotypic characteristics than their parents do.Chinese cabbage(Brassica rapa L.spp.pekinensis)is a popular leafy crop species,hybrids of which are widely used in commercial production;however,the molecular basis of heterosis for biomass of Chinese cabbage is poorly understood.We characterized heterosis in a Chinese cabbage hybrid cultivar and its parental lines from the seedling stage to the heading stage;marked heterosis of leaf weight and biomass yield were observed.Small RNA sequencing revealed 63 and 50 differentially expressed microRNAs(DEMs)at the seedling and early-heading stages,respectively.The expression levels ofthe majority of miRNA clusters in the hybrid were lower than the mid-parent values(MPVs).Using degradome sequencing,we identi fied 1,819 miRNA target genes.Gene ontology(GO)analyses demonstrated that the target genes ofthe MPV-DEMs and low parental expression level dominance(ELD)miRNAs were signi ficantly enriched in leaf morphogenesis,leaf development,and leaf shaping.Transcriptome analysis revealed that the expression levels of photosynthesis and chlorophyll synthesis-related MPV-DEGs(differentially expressed genes)were signi ficantly different in the F_(1) hybrid compared to the parental lines,resulting in increased photosynthesis capacity and chlorophyll content in the former.Furthermore,expression of genes known to regulate leaf development was also observed at the seedling stage.Arabidopsis plants overexpressing BrGRF4.2 and bra-miR396 presented increased and decreased leaf sizes,respectively.These results provide new insight into the regulation of target genes and miRNA expression patterns in leaf size and heterosis for biomass of B.rapa. 展开更多
关键词 HEADING SEEDLING analysis
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部