In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffecti...In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.展开更多
Hydraulic control valves, positioned at the terminus of pipe networks, are critical for regulatingflow and pressure, thereby ensuring the operational safety and efficiency of pipeline systems. However,conventional val...Hydraulic control valves, positioned at the terminus of pipe networks, are critical for regulatingflow and pressure, thereby ensuring the operational safety and efficiency of pipeline systems. However,conventional valve designs often struggle to maintain effective regulation across a wide range of systempressures. To address this limitation, this study introduces a novel Pilot hydraulic valves specificallyengineered for enhanced dynamic performance and precise regulation under variable pressure conditions.Building upon prior experimental findings, the proposed design integrates a high-fidelity simulationframework and a surrogate model-based optimization strategy. The study begins by formulating acomprehensive mathematical model of the pipeline system using electro-hydraulic simulation techniques,capturing the dynamic behavior of both the pilot valve and the broader urban water distribution network. Acoupled simulation platform is then developed, leveraging both one-dimensional (1D) and three-dimensional(3D) software tools to accurately analyze the valve’s transient response and operational characteristics. Toachieve optimal valve performance, a multi-objective optimization approach is proposed. This approachemploys a Levy-based Improved Tuna-InspiredWake-Up Optimization Algorithm (L-TIWOA) to refine aBackpropagation (BP) neural network, thereby constructing a highly accurate surrogate model. Compared tothe conventional BP neural network, the improved model demonstrates significantly reduced mean absoluteerror (MAE) and mean squared error (MSE), underscoring its superior predictive capability. The surrogatemodel serves as the objective function within an Improved Multi-Objective Mother Lode OptimizationAlgorithm (IMOMLOA), which is then used to fine-tune the key design parameters of the control valve.Validation through experimental testing reveals that the optimized valve achieves a maximum flow deviationof just 1.11 t/h, corresponding to a control accuracy of 3.7%, at a target flow rate of 30 t/h. Moreover,substantial improvements in dynamic response are observed, confirming the effectiveness of the proposeddesign and optimization strategy.展开更多
The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance...The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios.展开更多
Subsea development is moving constantly toward simplification,digitalization,and cost-out strategies because the exploration and production of hydrocarbons are moving toward deeper and remote sea water areas.Usage of ...Subsea development is moving constantly toward simplification,digitalization,and cost-out strategies because the exploration and production of hydrocarbons are moving toward deeper and remote sea water areas.Usage of all-electric subsea technology instead of hydraulic technology is growing and will be the future of subsea systems due to the former’s environmental and functional advantages and reduced costs.The benefits of all-electric subsea systems are health,safety,and environment(HSE)and improved reliability,flexibility,and functionality compared with traditional hydraulic-electrical systems.Existing electrohydraulic technology for a typical subsea system,hydraulic and electric actuators,and subsea manifold valves including valve types and selection philosophy have been reviewed in this paper.Some major worldwide oil companies such as Equinor and Schlumberger have successful experiences with subsea electric actuators.Considering the benefits of all-electric technology especially in terms of cost and HSE,as well as successful experiences of two major oil companies,further research in this area is warranted.One of the gaps in existing reviewed literature is the effect of using all-electric actuators for manifold valves.Thus,three main questions related to electric actuator selection,requirement of safety integrity level(SIL),and effect of using electric actuators on manifold valve selection have been addressed and answered.Forty hydraulic actuated manifold valves from nine past subsea projects in different parts of the world,mainly Africa and Australia,have been selected for the analysis of all-electric actuators.Results show that 93%of the valves require spring-return electric actuators,whereas 7%can be operated with conventional electric actuators without any spring.The manifold valves do not require SIL certification because they are not connected to an emergency shut down system.Introducing the electric actuators to the manifold valve will not change the valve selection philosophy.展开更多
In view of the problem that crystalline particles cause wall vibration at a low temperature,based on two-phase flow model,computational fuid dynamics is used to conduct the numerical simulation of internal flows when ...In view of the problem that crystalline particles cause wall vibration at a low temperature,based on two-phase flow model,computational fuid dynamics is used to conduct the numerical simulation of internal flows when the valve openings are 20%,60%and 100%respectively.The molten salt fow may be changed under strict conditions and produce forced vibration of the inner parts of molten salt particle shock valve body.Euler two-phase flow model is used for different molten salt sizes to extract temporal pressure pulse information and conduct statistical data processing analysis.The influence of the molten salt crystallization of molten salt particles on the fow and pressure pulse strength is analyzed.The results show that the crystallization of molten salt has a serious impact on the vibration of the valve body,especially in the throttle rate.The valve oscillation caused by the pressure pulsation mostly occurs from the small opening rate.As the opening increases,the pressure pulse threshold and its change trend decrease.展开更多
Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,sp...Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,speed,flow,etc.within the appropriate operating range and to ensure a quality product is produced.All control valves have a bypass so that production can proceed if maintenance is needed for the control valve as part of the control loop.The important point is that in both operation and maintenance situations,the bypass valve and the control valve should have approximately the same flow capacity to provide nearly the same amount of pressure.This paper presents a case study in seawater service on the selection of manual bypass valves for a 16″control valve in class 150 and titanium material.A 16″butterfly valve of class 150 was chosen for the control valve bypass,which provided a much higher flow capacity than the control valve.In this paper,four solutions are recommended to achieve the same coefficient value(Cv)for the control and bypass valve.Using the reduced size butterfly valve could be the cheapest and best solution.On the other hand,selecting the same control valve for bypass line is the most expensive but maybe the most reliable solution.Using a flow orifice for throttling could be ranked as the second expensive option and the second reliable one.Selection of butterfly valve for throttling is the second cheapest option,but it has the least reliability.Different parameters such as space and weight saving,cost as well as reliability have been considered in evaluation of different solutions.展开更多
High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and ...High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.展开更多
(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co co...(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co content on microstructure and mechanical properties were investigated.The results indicate that the grain size of the alloy decreases with increasing the Co content.In the as-cast state,the alloy consists primarily of the B19′phase,with a trace of B2 phase.The fracture morphology is predominantly composed of the B19′phase,whereas the B2 phase is nearly absent.Increasing the Co content or reducing the sample dimensions(d)markedly enhance the compressive strength and ductility of the alloy.When d=2 mm,the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy demonstrates the optimal mechanical properties,achieving a compressive strength of 2142.39±1.8 MPa and a plasticity of 17.31±0.3%.The compressive cyclic test shows that with increasing the compressive strain,the residual strain of the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy increases while the recovery ability declines.The superelastic recovery capability of the alloy is continuously enhanced.The superelastic recovery rate increases from 1.36%to 2.12%,the residual strain rate rises from 1.79%to 5.52%,the elastic recovery rate ascends from 3.86%to 7.36%,while the total recovery rate declines from 74.48%to 63.20%.展开更多
Bacterial and mycoplasma infections pose a severe hazard to human life and property.These necessitate the development of antibacterial metallic materials that can be produced efficiently in large quantities.In this st...Bacterial and mycoplasma infections pose a severe hazard to human life and property.These necessitate the development of antibacterial metallic materials that can be produced efficiently in large quantities.In this study,an(Fe_(63.3)Mn_(14)Si_(9.1)Cr_(9.8)C_(3.8))_(86)Cu_(12)Ag_(2)medium-entropy alloy(MEA)consisting of in situ FCC1(austenite)and FCC2(Cu–Ag-rich)phases was prepared.It displayed a yield strength of 1100 MPa,fracture strength of 1921 MPa,and compressive plasticity of 27%at room temperature.This is attributed to the low stacking fault energy(3.7 m J m^(-2))inducing strong transformation-induced plasticity(TRIP),twinning-induced plasticity(TWIP),and lattice distortion.The alloy contained nano-and microscale antibacterial phases.This enabled it to achieve an antimicrobial efficiency higher than 99.9%against E.coli and S.aureus after6 h of exposure.The hot working efficiency makes it preferable for mass production with critical process parameters.A constitutive model was established using the Arrhenius equation to validate the applicability of the dynamic materials model(DMM).Subsequently,the hot processing map of the medium-entropy alloy was established based on the DMM.The optimal processing parameters were determined as 800℃with strain rates of10^(–1)–10^(–2)s^(-1).The low stacking fault energy ensures that dynamic recrystallization is the primary softening mechanism in the“safe”region.Finally,the density of states(DOS)of the MEA(determined by first-principles calculations)was significantly lower(162.1 eV)than those of Ni and Fe.This indicated a strong high-temperature stability.The DOS increased marginally with an increase in deformation.展开更多
In recent years,various highly pathogenic viruses have spread worldwide,posing serious threats to human life and property,thus creating an urgent demand for antibacterial structural materials.In this study,we develope...In recent years,various highly pathogenic viruses have spread worldwide,posing serious threats to human life and property,thus creating an urgent demand for antibacterial structural materials.In this study,we developed two types of antibacterial medium-entropy alloys (MEAs):as-cast (Fe_(63.3)Mn_(14)Si_(9.1)Cr_(9.8)C_(3.8))_(88-x)Cu_(12)Ag_(x)(x=2,4 at%)(which do not require antibacterial aging heat treatment) and heat-treated (Fe_(63.3)Mn_(14)Si_(9.1)Cr_(9.8)C_(3.8))_(99.5-x)Cu_(x)Ag_(0.5)(x=2,4 at%)(abbreviated as CuxAg0.5 and Cu12Agx).Both MEA s exhibit in transformation-induced plasticity (TRIP) and twinning-induced plasticity effects,demonstrating outstanding mechanical properties.Compared to 304 stainless steels,these ME As exhibit superior corrosion resistance,with the Cu2Ag0.5alloy performing the best,exhibiting a corrosion current density of 1.022 A·cm^(-2)and a corrosion potential of-0.297 VSCE.The antibacterial rate of the MEAs reached99.9%after 24 h of interaction with Escherichia coli and Staphylococcus aureus,with Cu 12Ag2 achieving 99.9%antimicrobial activity within 6 h,indicating a shorter activation time for antibacterial activity.According to firstprinciples calculations of state density,work function,and surface energy,Cu12Ag2 demonstrated the highest ion release capability,with a work function of 3.7 eV and surface energy of 1.9 J·m^(-2).The electrostatic adsorption of the Xanthium sibiricum bionic structure,characterized by a nanoscale spherical phase within the antibacterial phase with a size less than 350 nm,promotes ion penetration into bacterial cells,enhancing the synergistic effects of ionic,electronic,and catalytic antibacterial mechanisms.This study provides a new approach for designing high-performance alloys that integrate functional and structural properties,offering broad-spectrum,efficient antibacterial applications under load-bearing conditions.展开更多
Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by ...Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by different degrees of deep cryogenic deformation are not yet fully elucidated.In this study,the effects of multiple cryogenic pre-treatments on the mechanical properties and deformation mechanisms of a paramagnetic Fe_(63.3)Mn_(14-)Si_(9.1)Cr_(9.8)C_(3.8)medium-entropy alloy(MEA)were investigated,leading to the discovery of a pretreated MEA that exhibits exceptional mechanical properties,including a fracture strength of 3.0 GPa,plastic strain of 26.1%and work-hardening index of 0.57.In addition,X-ray diffraction(XRD)and transmission electron microscopy(TEM)analyses revealed that multiple cryogenic pre-deformation treatments significantly increased the dislocation density of the MEA(from 9×10^(15)to 4×10^(16)m^(-2)after three pretreatments),along with a transition in the dislocation type from predominantly edge dislocations to mixed dislocations(including screw-and edge-type dislocations).Notably,this pretreated MEA retained its paramagnetic properties(μ_(r)<1.0200)even after fracture.Thermodynamic calculations showed that cryogenic pretreatment can significantly reduce the stacking fault energy of the MEA by a factor of approximately four(i.e.,from 9.7 to2.6 m J·m^(-2)),thereby activating the synergistic effects of transformation-induced plasticity,twinning-induced plasticity and dislocation strengthening mechanisms.These synergistic effects lead to simultaneous strength and ductility enhancement of the MEA.展开更多
An actuator is a machine or component installed on the top of an industrial valve for automatically moving and controlling the valve.The performance of a valve is largely dependent on its actuator.An actuator can be h...An actuator is a machine or component installed on the top of an industrial valve for automatically moving and controlling the valve.The performance of a valve is largely dependent on its actuator.An actuator can be hydraulic,pneumatic,or electrical.This paper focuses on hydraulic actuators,which are common for large size and high-pressure class ball valves.Hydraulic actuators can be either single-acting(spring return)or double-acting.Single-acting actuators return to safe mode in case of failure.However,double-acting actuators have a fail-as-is function and cannot keep the valves open or closed in case of failure.This research used a combination of theoretical and experimental approaches.The paper discusses two case studies in offshore industry projects in which double-acting hydraulic actuators were selected instead of single-acting,and possible design impacts are discussed.A theoretical review is given in three papers about operating torque for ball valves,optimization of shutdown valve actuator weight,and design and analysis of hydraulic actuators.These three papers were selected for review to connect the valve required torque with actuator sizing and selection,finding practical approaches to optimize the actuator weight as well as develop a theoretical model to calculate the actuator thickness and dimensions for the 38”CL1500 ball valve in the Johan Sverdrup project.The proposed formulas and calculations used for sizing the 38”CL1500 ball valves were validated through a finite element analysis model.展开更多
In order to improve the performance and service life of the Leningrader seal of the Stirling engine piston rod,interference,pre-load and friction coefficient were taken as influencing factors,and the curved surface re...In order to improve the performance and service life of the Leningrader seal of the Stirling engine piston rod,interference,pre-load and friction coefficient were taken as influencing factors,and the curved surface response method was adopted to reduce the contact stress of sealing surface and von Mises stress of the sealing sleeve as the response index,with the optimization goal of reducing wear and extending life.The above three key parameters are analyzed and optimized,the influence of each parameter on the sealing performance and service life is obtained,and the best combination scheme of the three is determined.The results show that the interaction between pre-tightening force and interference fit has the greatest impact on contact stress.The interaction between interference fit and friction coeffi-cient has the most significant effect on von Mises stress.The optimized parameters can reduce the maximum contact stress and maximum von Mises stress of the sealing sleeve by 26.3%and 20.6%,respectively,under a media pressure of 5-9 MPa.Test bench verification shows that the leakage of the optimized sealing device in 12 h is reduced by 0.44 cc·min^(-1)(1 cc=1 cm^(3)).The wear rate of the sealing sleeve is 1.08%before optimization and 0.45%after optimization,indicating that the optimized parameters in this paper are effective.展开更多
文摘In photothermal power(solar energy)generation systems,purging residual molten salt from pipelines using highpressure gas poses a significant challenge,particularly in clearing the bottom of regulating valves.Ineffective purging can lead to crystallization of the molten salt,resulting in blockages.To address this issue,understanding the gas-liquid two-phase flow dynamics during high-pressure gas purging is crucial.This study utilizes the Volume of Fluid(VOF)model and adaptive dynamic grids to simulate the gas-liquid two-phase flow during the purging process in a DN50 PN50 conventional molten salt regulating valve.Initially,the reliability of the CFD simulations is validated through comparisons with experimental data and findings from the literature.Subsequently,simulation experiments are conducted to analyze the effects of various factors,including purge flow rates,initial liquid accumulation masses,purge durations,and the profiles of the valve bottom flow channels.The results indicate that the purging process comprises four distinct stages:Initial violent surge stage,liquid discharge stage,liquid partial fallback stage,liquid dissipation stage.For an initial liquid height of 17 mm at the bottom of the valve,the critical purge flow rate lies between 3 and 5 m/s.Notably,the critical purge flow rate is independent of the initial liquid accumulation mass.As the purge gas flow rate increases,the volume of liquid discharged also increases.Beyond the critical purge flow rate,higher purge gas velocities lead to shorter purge durations.Interestingly,the residual liquid mass after purging remains unaffected by the initial liquid accumulation.Additionally,the flow channel profile at the bottom of the valve significantly influences both the critical purge speed and the efficiency of the purging process.
基金Gansu Provincial Department of Education(Industrial Support Plan Project:202CYZC-048).
文摘Hydraulic control valves, positioned at the terminus of pipe networks, are critical for regulatingflow and pressure, thereby ensuring the operational safety and efficiency of pipeline systems. However,conventional valve designs often struggle to maintain effective regulation across a wide range of systempressures. To address this limitation, this study introduces a novel Pilot hydraulic valves specificallyengineered for enhanced dynamic performance and precise regulation under variable pressure conditions.Building upon prior experimental findings, the proposed design integrates a high-fidelity simulationframework and a surrogate model-based optimization strategy. The study begins by formulating acomprehensive mathematical model of the pipeline system using electro-hydraulic simulation techniques,capturing the dynamic behavior of both the pilot valve and the broader urban water distribution network. Acoupled simulation platform is then developed, leveraging both one-dimensional (1D) and three-dimensional(3D) software tools to accurately analyze the valve’s transient response and operational characteristics. Toachieve optimal valve performance, a multi-objective optimization approach is proposed. This approachemploys a Levy-based Improved Tuna-InspiredWake-Up Optimization Algorithm (L-TIWOA) to refine aBackpropagation (BP) neural network, thereby constructing a highly accurate surrogate model. Compared tothe conventional BP neural network, the improved model demonstrates significantly reduced mean absoluteerror (MAE) and mean squared error (MSE), underscoring its superior predictive capability. The surrogatemodel serves as the objective function within an Improved Multi-Objective Mother Lode OptimizationAlgorithm (IMOMLOA), which is then used to fine-tune the key design parameters of the control valve.Validation through experimental testing reveals that the optimized valve achieves a maximum flow deviationof just 1.11 t/h, corresponding to a control accuracy of 3.7%, at a target flow rate of 30 t/h. Moreover,substantial improvements in dynamic response are observed, confirming the effectiveness of the proposeddesign and optimization strategy.
基金funded by Gansu Provincial Department of Education(Industrial Support Plan Project:2025CYZC-048).
文摘The conventional Shear Stress Transport(SST)k–ωturbulence model often exhibits substantial inaccu-racies when applied to the prediction of flow behavior in complex regions within axial flow control valves.To enhance its predictive fidelity for internal flow fields,this study introduces a novel calibration framework that integrates an artificial neural network(ANN)surrogate model with a particle swarm optimization(PSO)algorithm.In particular,an optimal Latin hypercube sampling strategy was employed to generate representative sample points across the empirical parameter space.For each sample,numerical simulations using ANSYS Fluent were conducted to evaluate the flow characteristics,with empirical turbulence model parameters as inputs and flow rate as the target output.These data were used to construct the high-fidelity ANN surrogate model.The PSO algorithm was then applied to this surrogate to identify the optimal set of empirical parameters tailored specifically to axial flow control valve configurations.A revealed by the presented results,the calibrated SST k–ωmodel significantly improves prediction accuracy:deviations from large eddy simulation(LES)benchmarks at small valve openings were reduced from 7.6%to under 3%.Furthermore,the refined model maintains the computational efficiency characteristic of Reynolds-averaged Navier-Stokes(RANS)simulations while substantially enhancing the accuracy of both pressure and velocity field predictions.Overall,the proposed methodology effectively reconciles the trade-off between computational cost and predictive accuracy,offering a robust and scalable approach for turbulence model calibration in complex internal flow scenarios.
文摘Subsea development is moving constantly toward simplification,digitalization,and cost-out strategies because the exploration and production of hydrocarbons are moving toward deeper and remote sea water areas.Usage of all-electric subsea technology instead of hydraulic technology is growing and will be the future of subsea systems due to the former’s environmental and functional advantages and reduced costs.The benefits of all-electric subsea systems are health,safety,and environment(HSE)and improved reliability,flexibility,and functionality compared with traditional hydraulic-electrical systems.Existing electrohydraulic technology for a typical subsea system,hydraulic and electric actuators,and subsea manifold valves including valve types and selection philosophy have been reviewed in this paper.Some major worldwide oil companies such as Equinor and Schlumberger have successful experiences with subsea electric actuators.Considering the benefits of all-electric technology especially in terms of cost and HSE,as well as successful experiences of two major oil companies,further research in this area is warranted.One of the gaps in existing reviewed literature is the effect of using all-electric actuators for manifold valves.Thus,three main questions related to electric actuator selection,requirement of safety integrity level(SIL),and effect of using electric actuators on manifold valve selection have been addressed and answered.Forty hydraulic actuated manifold valves from nine past subsea projects in different parts of the world,mainly Africa and Australia,have been selected for the analysis of all-electric actuators.Results show that 93%of the valves require spring-return electric actuators,whereas 7%can be operated with conventional electric actuators without any spring.The manifold valves do not require SIL certification because they are not connected to an emergency shut down system.Introducing the electric actuators to the manifold valve will not change the valve selection philosophy.
基金the National Natural Science Foundation of China(No.51569012)。
文摘In view of the problem that crystalline particles cause wall vibration at a low temperature,based on two-phase flow model,computational fuid dynamics is used to conduct the numerical simulation of internal flows when the valve openings are 20%,60%and 100%respectively.The molten salt fow may be changed under strict conditions and produce forced vibration of the inner parts of molten salt particle shock valve body.Euler two-phase flow model is used for different molten salt sizes to extract temporal pressure pulse information and conduct statistical data processing analysis.The influence of the molten salt crystallization of molten salt particles on the fow and pressure pulse strength is analyzed.The results show that the crystallization of molten salt has a serious impact on the vibration of the valve body,especially in the throttle rate.The valve oscillation caused by the pressure pulsation mostly occurs from the small opening rate.As the opening increases,the pressure pulse threshold and its change trend decrease.
文摘Modern processing plants use a variety of control loop networks to deliver a finished product to the market.Such control loops,like control valves,are designed to keep process variables such as pressure,temperature,speed,flow,etc.within the appropriate operating range and to ensure a quality product is produced.All control valves have a bypass so that production can proceed if maintenance is needed for the control valve as part of the control loop.The important point is that in both operation and maintenance situations,the bypass valve and the control valve should have approximately the same flow capacity to provide nearly the same amount of pressure.This paper presents a case study in seawater service on the selection of manual bypass valves for a 16″control valve in class 150 and titanium material.A 16″butterfly valve of class 150 was chosen for the control valve bypass,which provided a much higher flow capacity than the control valve.In this paper,four solutions are recommended to achieve the same coefficient value(Cv)for the control and bypass valve.Using the reduced size butterfly valve could be the cheapest and best solution.On the other hand,selecting the same control valve for bypass line is the most expensive but maybe the most reliable solution.Using a flow orifice for throttling could be ranked as the second expensive option and the second reliable one.Selection of butterfly valve for throttling is the second cheapest option,but it has the least reliability.Different parameters such as space and weight saving,cost as well as reliability have been considered in evaluation of different solutions.
文摘High-Entropy Alloys(HEAs)exhibit significant potential across multiple domains due to their unique properties.However,conventional research methodologies face limitations in composition design,property prediction,and process optimization,characterized by low efficiency and high costs.The integration of Artificial Intelligence(AI)technologies has provided innovative solutions for HEAs research.This review presented a detailed overview of recent advancements in AI applications for structural modeling and mechanical property prediction of HEAs.Furthermore,it discussed the advantages of big data analytics in facilitating alloy composition design and screening,quality control,and defect prediction,as well as the construction and sharing of specialized material databases.The paper also addressed the existing challenges in current AI-driven HEAs research,including issues related to data quality,model interpretability,and cross-domain knowledge integration.Additionally,it proposed prospects for the synergistic development of AI-enhanced computational materials science and experimental validation systems.
基金National Natural Science Foundation of China(12404230,52061027)Science and Technology Program Project of Gansu Province(22YF7GA155)+1 种基金Lanzhou Youth Science and Technology Talent Innovation Project(2023-QN-91)Zhejiang Provincial Natural Science Foundation of China(LY23E010002)。
文摘(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co content on microstructure and mechanical properties were investigated.The results indicate that the grain size of the alloy decreases with increasing the Co content.In the as-cast state,the alloy consists primarily of the B19′phase,with a trace of B2 phase.The fracture morphology is predominantly composed of the B19′phase,whereas the B2 phase is nearly absent.Increasing the Co content or reducing the sample dimensions(d)markedly enhance the compressive strength and ductility of the alloy.When d=2 mm,the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy demonstrates the optimal mechanical properties,achieving a compressive strength of 2142.39±1.8 MPa and a plasticity of 17.31±0.3%.The compressive cyclic test shows that with increasing the compressive strain,the residual strain of the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy increases while the recovery ability declines.The superelastic recovery capability of the alloy is continuously enhanced.The superelastic recovery rate increases from 1.36%to 2.12%,the residual strain rate rises from 1.79%to 5.52%,the elastic recovery rate ascends from 3.86%to 7.36%,while the total recovery rate declines from 74.48%to 63.20%.
基金financially supported by the Science and Technology Program Project of Gansu Province(No.24ZD13GA018)the National Natural Science Foundation of China(Nos.12404230 and 52061027)+1 种基金Zhejiang Provincial Natural Science Foundation of China(No.LY23E010002)Lanzhou Youth Science and Technology Talent Innovation Project(No.2023-QN-91)
文摘Bacterial and mycoplasma infections pose a severe hazard to human life and property.These necessitate the development of antibacterial metallic materials that can be produced efficiently in large quantities.In this study,an(Fe_(63.3)Mn_(14)Si_(9.1)Cr_(9.8)C_(3.8))_(86)Cu_(12)Ag_(2)medium-entropy alloy(MEA)consisting of in situ FCC1(austenite)and FCC2(Cu–Ag-rich)phases was prepared.It displayed a yield strength of 1100 MPa,fracture strength of 1921 MPa,and compressive plasticity of 27%at room temperature.This is attributed to the low stacking fault energy(3.7 m J m^(-2))inducing strong transformation-induced plasticity(TRIP),twinning-induced plasticity(TWIP),and lattice distortion.The alloy contained nano-and microscale antibacterial phases.This enabled it to achieve an antimicrobial efficiency higher than 99.9%against E.coli and S.aureus after6 h of exposure.The hot working efficiency makes it preferable for mass production with critical process parameters.A constitutive model was established using the Arrhenius equation to validate the applicability of the dynamic materials model(DMM).Subsequently,the hot processing map of the medium-entropy alloy was established based on the DMM.The optimal processing parameters were determined as 800℃with strain rates of10^(–1)–10^(–2)s^(-1).The low stacking fault energy ensures that dynamic recrystallization is the primary softening mechanism in the“safe”region.Finally,the density of states(DOS)of the MEA(determined by first-principles calculations)was significantly lower(162.1 eV)than those of Ni and Fe.This indicated a strong high-temperature stability.The DOS increased marginally with an increase in deformation.
基金financially supported by the National Natural Science Foundation of China(Nos.12404230 and 52061027)Zhejiang Provincial Natural Science Foundation of China(No.LY23E010002)+2 种基金the Science and Technology Program Project of Gansu Province(Nos.22YF7GA155 and 22ZD6GA008)Lanzhou Youth Science and Technology Talent Innovation Project(No.2023-QN-91)the support from Gansu Provincial Computing Center
文摘In recent years,various highly pathogenic viruses have spread worldwide,posing serious threats to human life and property,thus creating an urgent demand for antibacterial structural materials.In this study,we developed two types of antibacterial medium-entropy alloys (MEAs):as-cast (Fe_(63.3)Mn_(14)Si_(9.1)Cr_(9.8)C_(3.8))_(88-x)Cu_(12)Ag_(x)(x=2,4 at%)(which do not require antibacterial aging heat treatment) and heat-treated (Fe_(63.3)Mn_(14)Si_(9.1)Cr_(9.8)C_(3.8))_(99.5-x)Cu_(x)Ag_(0.5)(x=2,4 at%)(abbreviated as CuxAg0.5 and Cu12Agx).Both MEA s exhibit in transformation-induced plasticity (TRIP) and twinning-induced plasticity effects,demonstrating outstanding mechanical properties.Compared to 304 stainless steels,these ME As exhibit superior corrosion resistance,with the Cu2Ag0.5alloy performing the best,exhibiting a corrosion current density of 1.022 A·cm^(-2)and a corrosion potential of-0.297 VSCE.The antibacterial rate of the MEAs reached99.9%after 24 h of interaction with Escherichia coli and Staphylococcus aureus,with Cu 12Ag2 achieving 99.9%antimicrobial activity within 6 h,indicating a shorter activation time for antibacterial activity.According to firstprinciples calculations of state density,work function,and surface energy,Cu12Ag2 demonstrated the highest ion release capability,with a work function of 3.7 eV and surface energy of 1.9 J·m^(-2).The electrostatic adsorption of the Xanthium sibiricum bionic structure,characterized by a nanoscale spherical phase within the antibacterial phase with a size less than 350 nm,promotes ion penetration into bacterial cells,enhancing the synergistic effects of ionic,electronic,and catalytic antibacterial mechanisms.This study provides a new approach for designing high-performance alloys that integrate functional and structural properties,offering broad-spectrum,efficient antibacterial applications under load-bearing conditions.
基金supported by the National Natural Science Foundation of China(Nos.52061027 and 52130108)Zhejiang Provincial Natural Science Foundation of China(No.LY23E010002)+1 种基金the Science and Technology Program Project of Gansu Province(Nos.22YF7GA155 and 22ZD6GA008)Lanzhou Youth Science and Technology Talent Innovation Project(No.2023-QN-91)。
文摘Cryogenic pre-deformation treatment has been widely used to effectively improve the comprehensive mechanical properties of steels and novel metals.However,the dislocation evolution and phase transformation induced by different degrees of deep cryogenic deformation are not yet fully elucidated.In this study,the effects of multiple cryogenic pre-treatments on the mechanical properties and deformation mechanisms of a paramagnetic Fe_(63.3)Mn_(14-)Si_(9.1)Cr_(9.8)C_(3.8)medium-entropy alloy(MEA)were investigated,leading to the discovery of a pretreated MEA that exhibits exceptional mechanical properties,including a fracture strength of 3.0 GPa,plastic strain of 26.1%and work-hardening index of 0.57.In addition,X-ray diffraction(XRD)and transmission electron microscopy(TEM)analyses revealed that multiple cryogenic pre-deformation treatments significantly increased the dislocation density of the MEA(from 9×10^(15)to 4×10^(16)m^(-2)after three pretreatments),along with a transition in the dislocation type from predominantly edge dislocations to mixed dislocations(including screw-and edge-type dislocations).Notably,this pretreated MEA retained its paramagnetic properties(μ_(r)<1.0200)even after fracture.Thermodynamic calculations showed that cryogenic pretreatment can significantly reduce the stacking fault energy of the MEA by a factor of approximately four(i.e.,from 9.7 to2.6 m J·m^(-2)),thereby activating the synergistic effects of transformation-induced plasticity,twinning-induced plasticity and dislocation strengthening mechanisms.These synergistic effects lead to simultaneous strength and ductility enhancement of the MEA.
文摘An actuator is a machine or component installed on the top of an industrial valve for automatically moving and controlling the valve.The performance of a valve is largely dependent on its actuator.An actuator can be hydraulic,pneumatic,or electrical.This paper focuses on hydraulic actuators,which are common for large size and high-pressure class ball valves.Hydraulic actuators can be either single-acting(spring return)or double-acting.Single-acting actuators return to safe mode in case of failure.However,double-acting actuators have a fail-as-is function and cannot keep the valves open or closed in case of failure.This research used a combination of theoretical and experimental approaches.The paper discusses two case studies in offshore industry projects in which double-acting hydraulic actuators were selected instead of single-acting,and possible design impacts are discussed.A theoretical review is given in three papers about operating torque for ball valves,optimization of shutdown valve actuator weight,and design and analysis of hydraulic actuators.These three papers were selected for review to connect the valve required torque with actuator sizing and selection,finding practical approaches to optimize the actuator weight as well as develop a theoretical model to calculate the actuator thickness and dimensions for the 38”CL1500 ball valve in the Johan Sverdrup project.The proposed formulas and calculations used for sizing the 38”CL1500 ball valves were validated through a finite element analysis model.
基金Supported by the National Natural Science Foundation of China (51675509)Wenzhou Public Welfare Industrial Technology Project (G20170026).
文摘In order to improve the performance and service life of the Leningrader seal of the Stirling engine piston rod,interference,pre-load and friction coefficient were taken as influencing factors,and the curved surface response method was adopted to reduce the contact stress of sealing surface and von Mises stress of the sealing sleeve as the response index,with the optimization goal of reducing wear and extending life.The above three key parameters are analyzed and optimized,the influence of each parameter on the sealing performance and service life is obtained,and the best combination scheme of the three is determined.The results show that the interaction between pre-tightening force and interference fit has the greatest impact on contact stress.The interaction between interference fit and friction coeffi-cient has the most significant effect on von Mises stress.The optimized parameters can reduce the maximum contact stress and maximum von Mises stress of the sealing sleeve by 26.3%and 20.6%,respectively,under a media pressure of 5-9 MPa.Test bench verification shows that the leakage of the optimized sealing device in 12 h is reduced by 0.44 cc·min^(-1)(1 cc=1 cm^(3)).The wear rate of the sealing sleeve is 1.08%before optimization and 0.45%after optimization,indicating that the optimized parameters in this paper are effective.