期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparative Performance Evaluation of Large FPGAs with CNFET-and CMOS-based Switches in Nanoscale
1
作者 Mohammad Hossein Moaiyeri Ali Jahanian Keivan Navi 《Nano-Micro Letters》 SCIE EI CAS 2011年第3期178-188,共11页
Routing resources are the major bottlenecks in improving the performance and power consumption of the current FPGAs. Recently reported researches have shown that carbon nanotube field effect transistors(CNFETs) have c... Routing resources are the major bottlenecks in improving the performance and power consumption of the current FPGAs. Recently reported researches have shown that carbon nanotube field effect transistors(CNFETs) have considerable potentials for improving the delay and power consumption of the modern FPGAs. In this paper, hybrid CNFET-CMOS architecture is presented for FPGAs and then this architecture is evaluated to be used in modern FPGAs. In addition, we have designed and parameterized the CNFET-based FPGA switches and calibrated them for being utilized in FPGAs at 45 nm, 22 nm and 16 nm technology nodes.Simulation results show that the CNFET-based FPGA switches improve the current FPGAs in terms of performance, power consumption and immunity to process and temperature variations. Simulation results and analyses also demonstrate that the performance of the FPGAs is improved about 30%, on average and the average and leakage power consumptions are reduced more than 6% and 98% respectively when the CNFET switches are used instead of MOSFET FPGA switches. Moreover, this technique leads to more than 20.31%smaller area. It is worth mentioning that the advantages of CNFET-based FPGAs are more considerable when the size of FPGAs grows and also when the technology node becomes smaller. 展开更多
关键词 Carbon nanotube field effect transistor(CNFET) FPGA switches Performance evaluation Power consumption Process variation
在线阅读 下载PDF
Analysis and performance exploration of high performance(HfO_2) SOI FinFETs over the conventional(Si_3N_4) SOI FinFET towards analog/RF design
2
作者 Neeraj Jain Balwinder Raj 《Journal of Semiconductors》 EI CAS CSCD 2018年第12期68-74,共7页
Nowadays FinFET devices have replaced the MOS devices almost in all complex integrated circuits of electronic gadgets like computer peripherals, tablets, and smartphones in portable electronics. The scaling of FinFET ... Nowadays FinFET devices have replaced the MOS devices almost in all complex integrated circuits of electronic gadgets like computer peripherals, tablets, and smartphones in portable electronics. The scaling of FinFET is ongoing and the analog/RF performance is most affected by increased SCEs(short channel effects) in sub22 nm technology nodes. This paper explores the analog/RF performance study and analysis of high performance device-D2(conventional Hf02 spacer SOI FinFET) and device-D3(source/drain extended Hf02 spacer SOI FinFET) over the device-D1(conventional Si3 N4 spacer SOI FinFET) at 20 nm technology node through the 3-D(dimensional) simulation process. The major performance parameters like I(ON current), I(OFF current), gm(transconductance), gd(output conductance), A(intrinsic gain), SS(sub-threshold slope), TGF = g/I(trans-conductance generation factor), VEA(early voltage), GTFP(gain trans-conductance frequency product), TFP(tansconductance frequency product), GFP(gain frequency product), and f(cut-off frequency) are studied for evaluating the analog/RF performance of different flavored SOI FinFET structures. For analog performance evaluation,device-D3 and D2 give better results in terms of gm, ID(drain current) and SS parameters, and for RF performance evaluation device-D1 is better in terms of f, GTFP, TFP, and GFP parameters both at low and high values of V=0.05 V and V=0.7 V respectively. 展开更多
关键词 SOI FinFET SCEs intrinsic gain trans-conductance cut-off frequency
原文传递
Impact of underlap spacer region variation on electrostatic and analog perform-ance of symmetrical high-k SOI FinFET at 20 nm channel length
3
作者 Neeraj Jain Balwinder Raj 《Journal of Semiconductors》 EI CAS CSCD 2017年第12期13-21,共9页
Continued scaling of CMOS technology to achieve high performance and low power consumption of semiconductor devices in the complex integrated circuits faces the degradation in terms of electrostatic integrity, short c... Continued scaling of CMOS technology to achieve high performance and low power consumption of semiconductor devices in the complex integrated circuits faces the degradation in terms of electrostatic integrity, short channel effects (SCEs), leakage currents, device variability and reliability etc. Nowadays, multigate structure has become the promising candidate to overcome these problems. SO1 FinFET is one of the best multigate structures that has gained importance in all electronic design automation (EDA) industries due to its improved short channel effects (SCEs), because of its more effective gate-controlling capabilities. In this paper, our aim is to ex- plore the sensitivity of underlap spacer region variation on the performance of SOI FinFET at 20 nm channel length. Electric field modulation is analyzed with spacer length variation and electrostatic performance is evalu- ated in terms of performance parameter like electron mobility, electric field, electric potential, sub-threshold slope (SS), ON current (Ion), OFF current (/off) and Ion/loll ratio. The potential benefits of SOl FinFET at drain-to-source voltage, liDS = 0.05 V and VDS = 0.7 V towards analog and RF design is also evaluated in terms of intrinsic gain (Av), output conductance (go), trans-conductance (gin), gate capacitance (Cgg), and cut-off frequency OCT = gm/2πCgg) with spacer region variations. 展开更多
关键词 SOI FinFET SCEs underlap region DIBL analog and RF performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部