期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructures and Mechanical Properties of a New Multi-functional 460 MPa Grade Construction Structural Steel 被引量:3
1
作者 Zhenye Chen Zhangguo Lin +3 位作者 Jianjun Qi Yang Feng Liqing Chen Guodong Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第7期1131-1142,共12页
This article reports a new generation of Q460 multi-functional construction structural steel,which has high strength(yield strength larger than 460 MPa),excellent toughness(higher than 110 J/cm^(2) at-60 ℃),lower yie... This article reports a new generation of Q460 multi-functional construction structural steel,which has high strength(yield strength larger than 460 MPa),excellent toughness(higher than 110 J/cm^(2) at-60 ℃),lower yield ratio(lower than 0.8),good fire resistance(yield strength at 600 ℃ larger than two-thirds of its room-temperature yield strength)and better corrosion resistance.The eff ects of finish cooling temperature(FCT)on the microstructure and properties were studied by scanning electron microscopy(SEM),transmission electron microscopy(TEM),emission electron probe micro-analysis(EPMA),electron backscattering diff raction(EBSD),tensile tester,impact tester,periodic immersion cycle acceleration test and electrochemical experiment.The results show that the strength and toughness are simultaneously improved by decreasing the FCT due to more lath-like bainite with large number of dislocations,refined martensite/austenite(M/A)with higher carbon concentration and increased high angle boundaries.In addition,the fire resistance of the newly developed Q460 steel is obviously better than the conventional one,which is mainly due to non-recrystallized lath-like bainite with high dislocation density at elevated temperature.The corrosion resistance of the new Q460 steel is also improved due to the addition of Cu and Cr. 展开更多
关键词 Construction structural steel Thermo-mechanical controlled processing(TMCP) Finish rolling temperature Microstructure Mechanical properties
原文传递
Correlation of Microstructure Feature with Impact Fracture Behavior in a TMCP Processed High Strength Low Alloy Construction Steel 被引量:4
2
作者 Wen-Ting Zhu Jun-Jun Cui +2 位作者 Zhen-Ye Chen Yang Zhao Li-Qing Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第4期527-536,共10页
The present article aims at elucidating the effect of thermo-mechanical controlled processing(TMCP), especially the finish cooling temperature, on microstructure and mechanical properties of high strength low alloy st... The present article aims at elucidating the effect of thermo-mechanical controlled processing(TMCP), especially the finish cooling temperature, on microstructure and mechanical properties of high strength low alloy steels for developing superior low temperature toughness construction steel. The microstructural features were characterized by scanning electron microscope equipped with electron backscatter diffraction, and the mechanical behaviors in terms of tensile properties and impact toughness were analyzed in correlation with microstructural evolution. The results showed that the lower finish cooling temperature could lead to a considerable increase in impact toughness for this steel. A mixed microstructure was obtained by TMCP at lower finish cooling temperature, which contained much fine lath-like bainite with dot-shaped M/A constituent and less granular bainite and bainite ferrite. In this case, this steel possesses yield and ultimate tensile strengths of ~ 885 MPa and 1089 MPa, respectively, and a total elongation of ~ 15.3%, while it has a lower yield ratio of ~ 0.81. The superior impact toughness of ~ 89 J at-20 °C was obtained, and this was resulted from the multi-phase microstructure including grain refinement, preferred grain boundaries misorientation, fine lath-like bainite with dot-shaped M/A constituent. 展开更多
关键词 High strength low alloy steel Thermo-mechanical controlled processing(TMCP) Finish cooling temperature Microstructure Mechanical properties Impact toughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部