Neurodevelopmental and neurodegenerative illnesses constitute a global health issue and a foremost economic burden since they are a large cause of incapacity and death worldwide.Altogether,the burden of neurological d...Neurodevelopmental and neurodegenerative illnesses constitute a global health issue and a foremost economic burden since they are a large cause of incapacity and death worldwide.Altogether,the burden of neurological disorders has increased considerably over the past 30 years because of population aging.Overall,neurological diseases significantly impair cognitive and motor functions and their incidence will increase as societies age and the world's population continues to grow.Autism spectrum disorder,motor neuron disease,encephalopathy,epilepsy,stroke,ataxia,Alzheimer's disease,amyotrophic lateral sclerosis,Huntington's disease,and Parkinson's disease represent a non-exhaustive list of neurological illnesses.These affections are due to perturbations in cellular homeostasis leading to the progressive injury and death of neurons in the nervous system.Among the common features of neurological handicaps,we find protein aggregation,oxidative stress,neuroinflammation,and mitochondrial impairment in the target tissues,e.g.,the brain,cerebellum,and spinal cord.The high energy requirements of neurons and their inability to produce sufficient adenosine triphosphate by glycolysis,are responsible for their dependence on functional mitochondria for their integrity.Reactive oxygen species,produced along with the respiration process within mitochondria,can lead to oxidative stress,which compromises neuronal survival.Besides having an essential role in energy production and oxidative stress,mitochondria are indispensable for an array of cellular processes,such as amino acid metabolism,iron-sulfur cluster biosynthesis,calcium homeostasis,intrinsic programmed cell death(apoptosis),and intraorganellar signaling.Despite the progress made in the last decades in the understanding of a growing number of genetic and molecular causes of central nervous diseases,therapies that are effective to diminish or halt neuronal dysfunction/death are rare.Given the genetic complexity responsible for neurological disorders,the development of neuroprotective strategies seeking to preserve mitochondrial homeostasis is a realistic challenge to lastingly diminish the harmful evolution of these pathologies and so to recover quality of life.A promising candidate is the neuroglobin,a globin superfamily member of 151 amino acids,which is found at high levels in the brain,the eye,and the cerebellum.The protein,which localizes to mitochondria,is involved in electron transfer,oxygen storage and defence against oxidative stress;hence,possessing neuroprotective properties.This review surveys up-to-date knowledge and emphasizes on existing investigations regarding neuroglobin physiological functions,which remain since its discovery in 2000 under intense debate and the possibility of using neuroglobin either by gene therapy or its direct delivery into the brain to treat neurological disorders.展开更多
Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure pro...Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure proper protein folding,the addition of post-translational modifications,and delivering to intracellular and extracellular destinations.Astrocytes are fundamental homeostatic cells,controlling multiple aspects of the central nervous system physiology,such as ion balance,nutrients,blood flow,neurotransmitters,and responses to insults.Astrocytes are polarized cells,and,such as neurons,extensively use the secretory pathway for secreting factors and exposing functional receptors,channels,and transporters on the plasma membrane.In this review,we will underline the importance of studying the Golgi apparatus and the secretory pathway in astrocytes,based on the possible tight connection between the Golgi apparatus and astrocytes’homeostatic function.Given the topic of this review,we will provide examples mostly about the Golgi apparatus structure,function,localization,and its involvement in astrocytes’homeostatic response,with an insight into congenital glycosylation disorders,as an example of a potential future field in the study of astrocyte homeostatic failure and Golgi apparatus alteration.展开更多
With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale prod...With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale production.The compound etching approach,which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups,remains the main prevalent strategy.By contrast,synthesis methodologies utilizing elemental etching agents have been rarely reported.Here,we report a new elemental tellurium(Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry.By selectively removing the A-site element in MAX phases using Te,our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance.Experimental results show that Te-etched MXene delivers substantially higher capacities(exceeding 50%improvement over conventionally etched MXene)with superior rate capability,retaining high capacity at large current densities and demonstrating over 90%capacity retention after 1000 cycles.This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization,while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.展开更多
Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are...Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are incomplete and spare supraspinal pathways,especially those located within the peripheral white matter of the spinal cord,which includes reticulospinal pathways originating from the medullary reticular formation.Whereas there is abundant literature about the motor cortex,its corticospinal pathway,and its capacity to modulate functional recovery after SCI,less is known about the medullary reticular formation and its reticulospinal pathway.展开更多
A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-d...A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image.展开更多
This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductiv...This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr.展开更多
Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understoo...Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understood,in particular the influence on the hydrodynamic forces and moments of the distance of the foil to the free surface.Considering this,the present paper documents an experimental investigation in which forces and torque produced,under uniform flow,by a full-scale state-of-the-art hydrofoil(suitable both for kitesurf and windsurf)were measured.A range of velocities,angles of attack,and submergences were tested,leading to Froude numbers based on submergence with maximum values around five,a typical range in actual sailing conditions.From these tests,formulae for the hydrodynamic coefficients have been proposed.They can be used for developing Velocity Prediction Programs(VPP)for this kind of craft,a necessary tool to plan racing configurations and to analyze their racing performance.With the aim of making the experimental data useful for benchmarking numerical models and for future research on related topics such as foil ventilation and transition to turbulence,the specimen’s 3D file is provided as supplementary material to this paper.展开更多
Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations...Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments.展开更多
BACKGROUND The use of induction immunosuppression agents has improved kidney transplant outcomes,but selecting the optimal agent remains a point of debate.AIM To compare the long-term outcomes of kidney transplant rec...BACKGROUND The use of induction immunosuppression agents has improved kidney transplant outcomes,but selecting the optimal agent remains a point of debate.AIM To compare the long-term outcomes of kidney transplant recipients receiving alemtuzumab vs basiliximab induction,focusing on graft function,acute rejection,infection,malignancy,post-transplant glomerulonephritis,and survival,using a propensity score matched cohort design.METHODS Kidney transplant recipients who received alemtuzumab or basiliximab induction from 2014 to 2019 across two nephrology centres in Northwest England were evaluated.Propensity score matching at a 1:1.5 ratio ensured comparability between cohorts.Baseline characteristics,immunosuppression regimens,and outcomes were analyzed.Linear,binary logistic and Cox proportional hazard regression models.RESULTS A total of 436 recipients were included,with a median follow-up of 5.2 years.The matched cohort(n=262)had a mean age of 51.1±13.5 years;39%were female and 92%were white.There was no significant difference in the cumulative incidence of acute rejection[odds ratio(OR)=2.10;95%CI:0.9-4.9;P=0.110].Compared with basiliximab,alemtuzumab was associated with lower estimated glomerular filtration rate at 12 months(-6.6 mL/minute/1.73 m2;95%CI:-10.5 to-2.7;P<0.001)and higher risks of cytomegalovirus viremia(OR=3.2;95%CI:1.6-6.5;P<0.001),BK viremia(OR=2.4;95%CI:1.1-5.5;P=0.02),post-transplant malignancy(OR=6.2;95%CI:1.6-29.9;P=0.013),and death-censored graft loss(hazard ratio=3.6;95%CI:1.2-11.4;P=0.03).No significant differences were observed in post-transplant glomerulonephritis or recipient mortality.CONCLUSION In this propensity score-matched analysis,alemtuzumab induction was associated with lower graft function at 12 months and higher risks of viral infection,post-transplant malignancy,and graft loss compared with basiliximab.These findings highlight the need for further studies to confirm the long-term safety and effectiveness of alemtuzumab in kidney transplantation.展开更多
Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to prote...Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation,cell division,and migration.HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy.In line with this function,the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation.In cancer,HSPB8 has a dual role being capable of exerting either a pro-or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation.Moreover,HSPB8 exerts a protective function in different diseases by modulating the inflammatory response,which characterizes not only neurodegenerative diseases,but also other chronic or acute conditions affecting the nervous system,such as multiple sclerosis and intracerebellar hemorrhage.Of note,HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases.This is the case of cognitive impairment related to diabetes mellitus,in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis.This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions,focusing on the beneficial effects of its modulation.Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed,emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.展开更多
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly...There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.展开更多
The recent study exploring the bidirectional associations between gallstone disease,non-alcoholic fatty liver disease,and kidney stone disease highlights a critical concern in chronic disease management.Given the risi...The recent study exploring the bidirectional associations between gallstone disease,non-alcoholic fatty liver disease,and kidney stone disease highlights a critical concern in chronic disease management.Given the rising global prevalence of these conditions,understanding their interconnections is essential.The study emphasizes the importance of shared risk factors,such as obesity,type 2 diabetes,dyslipidemia,and oxidative stress,and calls for multidisciplinary screening strategies.This approach would improve patient outcomes and reduce the socio-economic burden.While the study contributes valuable insights from a Chinese population,further research across diverse populations is necessary to validate and extend these findings globally.Ultimately,the research underscores the need for integrated prevention programs to better manage these interconnected diseases and improve health outcomes.展开更多
Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interan...Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.展开更多
Nitrate contamination of groundwater is a worldwide problem, particularly in agricultural countries. Exposure to high levels of nitrates in groundwater can have adverse effects on the health of residents who use groun...Nitrate contamination of groundwater is a worldwide problem, particularly in agricultural countries. Exposure to high levels of nitrates in groundwater can have adverse effects on the health of residents who use groundwater for drinking. This study aims to assess the health risk associated with the ingestion of nitrates in well water in the town of M’bahiakro. Health risk maps were created on the basis of hazard quotients (HQ) using the US Environmental Protection Agency (USEPA) health risk assessment model. The results indicate that residents of the Koko, Dougouba and Baoulekro neighbourhoods, whatever their age, are potentially exposed to the toxic effects of NO3−during their daily intake of nitrate-contaminated well water, with reference to hazard quotients (HQ) greater than 1. Nitrate concentrations in the groundwater should therefore be controlled in order to prevent their harmful effects on the health of the population and guarantee its use in rice-growing activities in M’Bahiakro.展开更多
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner...The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.展开更多
Vulvodynia,a chronic pain disorder affecting the vulvar region,represents a significant challenge in both diagnosis and treatment within the field of women’s health.This condition is characterized by chronic pain tha...Vulvodynia,a chronic pain disorder affecting the vulvar region,represents a significant challenge in both diagnosis and treatment within the field of women’s health.This condition is characterized by chronic pain that significantly affects the quality of life of afflicted women.The present perspective paper examines the role of spinal sensitization and microglial activation in vulvodynia.展开更多
基金supported by AFM-Telethon grants N°21704 and 23264,Universite Paris Cite(Paris)the National Institute of Health and Medical Research(INSERM)+3 种基金the National Center for Scientific Research(CNRS)the French Association Connaître les Syndromes Cerebelleux(CSC)(to MCD)GV/2021/188 granted from Conselleria of Innovation,Universities,28 Science and Society digital of the Community of Valencia(Spain)(to ITC)Subprograma Atraccion de Talento-Contratos Postdoctorales de la Universitat de Valencia(to IMY).
文摘Neurodevelopmental and neurodegenerative illnesses constitute a global health issue and a foremost economic burden since they are a large cause of incapacity and death worldwide.Altogether,the burden of neurological disorders has increased considerably over the past 30 years because of population aging.Overall,neurological diseases significantly impair cognitive and motor functions and their incidence will increase as societies age and the world's population continues to grow.Autism spectrum disorder,motor neuron disease,encephalopathy,epilepsy,stroke,ataxia,Alzheimer's disease,amyotrophic lateral sclerosis,Huntington's disease,and Parkinson's disease represent a non-exhaustive list of neurological illnesses.These affections are due to perturbations in cellular homeostasis leading to the progressive injury and death of neurons in the nervous system.Among the common features of neurological handicaps,we find protein aggregation,oxidative stress,neuroinflammation,and mitochondrial impairment in the target tissues,e.g.,the brain,cerebellum,and spinal cord.The high energy requirements of neurons and their inability to produce sufficient adenosine triphosphate by glycolysis,are responsible for their dependence on functional mitochondria for their integrity.Reactive oxygen species,produced along with the respiration process within mitochondria,can lead to oxidative stress,which compromises neuronal survival.Besides having an essential role in energy production and oxidative stress,mitochondria are indispensable for an array of cellular processes,such as amino acid metabolism,iron-sulfur cluster biosynthesis,calcium homeostasis,intrinsic programmed cell death(apoptosis),and intraorganellar signaling.Despite the progress made in the last decades in the understanding of a growing number of genetic and molecular causes of central nervous diseases,therapies that are effective to diminish or halt neuronal dysfunction/death are rare.Given the genetic complexity responsible for neurological disorders,the development of neuroprotective strategies seeking to preserve mitochondrial homeostasis is a realistic challenge to lastingly diminish the harmful evolution of these pathologies and so to recover quality of life.A promising candidate is the neuroglobin,a globin superfamily member of 151 amino acids,which is found at high levels in the brain,the eye,and the cerebellum.The protein,which localizes to mitochondria,is involved in electron transfer,oxygen storage and defence against oxidative stress;hence,possessing neuroprotective properties.This review surveys up-to-date knowledge and emphasizes on existing investigations regarding neuroglobin physiological functions,which remain since its discovery in 2000 under intense debate and the possibility of using neuroglobin either by gene therapy or its direct delivery into the brain to treat neurological disorders.
文摘Cell function has a tight relationship with cell architecture.Distribution of proteins to the correct compartment is one of the functions of the traffic pathway through the Golgi apparatus.The others are to ensure proper protein folding,the addition of post-translational modifications,and delivering to intracellular and extracellular destinations.Astrocytes are fundamental homeostatic cells,controlling multiple aspects of the central nervous system physiology,such as ion balance,nutrients,blood flow,neurotransmitters,and responses to insults.Astrocytes are polarized cells,and,such as neurons,extensively use the secretory pathway for secreting factors and exposing functional receptors,channels,and transporters on the plasma membrane.In this review,we will underline the importance of studying the Golgi apparatus and the secretory pathway in astrocytes,based on the possible tight connection between the Golgi apparatus and astrocytes’homeostatic function.Given the topic of this review,we will provide examples mostly about the Golgi apparatus structure,function,localization,and its involvement in astrocytes’homeostatic response,with an insight into congenital glycosylation disorders,as an example of a potential future field in the study of astrocyte homeostatic failure and Golgi apparatus alteration.
基金supported by the National Natural Science Foundation of China(52472228,22309202)Natural Science Foundation of Sichuan Province(2023NSFSC1942)the Gusu Leading Talents Program(ZXL2023190)。
文摘With the rapid development of twodimensional MXene materials,numerous preparation strategies have been proposed to enhance synthesis efficiency,mitigate environmental impact,and enable scalability for large-scale production.The compound etching approach,which relies on cationic oxidation of the A element of MAX phase precursors while anions typically adsorb onto MXene surfaces as functional groups,remains the main prevalent strategy.By contrast,synthesis methodologies utilizing elemental etching agents have been rarely reported.Here,we report a new elemental tellurium(Te)-based etching strategy for the preparation of MXene materials with tunable surface chemistry.By selectively removing the A-site element in MAX phases using Te,our approach avoids the use of toxic fluoride reagents and achieves tellurium-terminated surface groups that significantly enhance sodium storage performance.Experimental results show that Te-etched MXene delivers substantially higher capacities(exceeding 50%improvement over conventionally etched MXene)with superior rate capability,retaining high capacity at large current densities and demonstrating over 90%capacity retention after 1000 cycles.This innovative synthetic strategy provides new insight into controllable MXene preparation and performance optimization,while the as-obtained materials hold promises for high-performance sodium-ion batteries and other energy storage systems.
基金supported by Craig H.Neilsen Foundation,Wings for Life Foundation,Canadian Institutes of Health Research,and Fonds de Recherche Québec-Santé(to FB).
文摘Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are incomplete and spare supraspinal pathways,especially those located within the peripheral white matter of the spinal cord,which includes reticulospinal pathways originating from the medullary reticular formation.Whereas there is abundant literature about the motor cortex,its corticospinal pathway,and its capacity to modulate functional recovery after SCI,less is known about the medullary reticular formation and its reticulospinal pathway.
基金funded by the National Natural Science Foundation of China(NNSFC)under Grant Numbers 42322408,42188101,and 42441809Additional support was provided by the Climbing Program of the National Space Science Center(NSSC,Grant No.E4PD3005)as well as the Specialized Research Fund for State Key Laboratories of China.
文摘A large-scale view of the magnetospheric cusp is expected to be obtained by the Soft X-ray Imager(SXI)onboard the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE).However,it is challenging to trace the three-dimensional cusp boundary from a two-dimensional X-ray image because the detected X-ray signals will be integrated along the line of sight.In this work,a global magnetohydrodynamic code was used to simulate the X-ray images and photon count images,assuming an interplanetary magnetic field with a pure Bz component.The assumption of an elliptic cusp boundary at a given altitude was used to trace the equatorward and poleward boundaries of the cusp from a simulated X-ray image.The average discrepancy was less than 0.1 RE.To reduce the influence of instrument effects and cosmic X-ray backgrounds,image denoising was considered before applying the method above to SXI photon count images.The cusp boundaries were reasonably reconstructed from the noisy X-ray image.
文摘This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr.
文摘Races using kitefoil and windfoil surfboards have been in the Olympic Games for the first time in Paris 2024,signalling their relevance in sailing sports.However,the dynamics of these devices is yet not well understood,in particular the influence on the hydrodynamic forces and moments of the distance of the foil to the free surface.Considering this,the present paper documents an experimental investigation in which forces and torque produced,under uniform flow,by a full-scale state-of-the-art hydrofoil(suitable both for kitesurf and windsurf)were measured.A range of velocities,angles of attack,and submergences were tested,leading to Froude numbers based on submergence with maximum values around five,a typical range in actual sailing conditions.From these tests,formulae for the hydrodynamic coefficients have been proposed.They can be used for developing Velocity Prediction Programs(VPP)for this kind of craft,a necessary tool to plan racing configurations and to analyze their racing performance.With the aim of making the experimental data useful for benchmarking numerical models and for future research on related topics such as foil ventilation and transition to turbulence,the specimen’s 3D file is provided as supplementary material to this paper.
基金supported by the National Natural Science Foundation of China(General Program)under Grant 52571385National Key R&D Program of China(Grant No.2024YFC2815000 and No.2024YFB3816000)+12 种基金Open Fund of State Key Laboratory of Deep-sea Manned Vehicles(Grant No.2025SKLDMV07)Shenzhen Science and Technology Program(WDZC20231128114452001,JCYJ20240813112107010 and JCYJ20240813111910014)the Tsinghua SIGS Scientific Research Startup Fund(QD2022021C)the Dreams Foundation of Jianghuai Advance Technology Center(2023-ZM 01 Z006)the Ocean Decade International Cooperation Center(ODCC)(GHZZ3702840002024020000026)Shenzhen Key Laboratory of Advanced Technology for Marine Ecology(ZDSYS20230626091459009)Shenzhen Science and Technology Program(No.KJZD20240903100905008)the National Natural Science Foundation of China(No.22305141)Pearl River Talent Program(No.2023QN10C114)General Program of Guangdong Province(No.2025A1515011700)the Guangdong Innovative and Entrepreneurial Research Team Program(2023ZT10C040)Scientific Research Foundation from Shenzhen Finance Bureau(No.GJHZ20240218113600002)Tsinghua University(JC2023001).
文摘Developing effective,versatile,and high-precision sensing interfaces remains a crucial challenge in human-machine-environment interaction applications.Despite progress in interaction-oriented sensing skins,limitations remain in unit-level reconfiguration,multiaxial force and motion sensing,and robust operation across dynamically changing or irregular surfaces.Herein,we develop a reconfigurable omnidirectional triboelectric whisker sensor array(RO-TWSA)comprising multiple sensing units that integrate a triboelectric whisker structure(TWS)with an untethered hydro-sealing vacuum sucker(UHSVS),enabling reversibly portable deployment and omnidirectional perception across diverse surfaces.Using a simple dual-triangular electrode layout paired with MXene/silicone nanocomposite dielectric layer,the sensor unit achieves precise omnidirectional force and motion sensing with a detection threshold as low as 0.024 N and an angular resolution of 5°,while the UHSVS provides reliable and reversible multi-surface anchoring for the sensor units by involving a newly designed hydrogel combining high mechanical robustness and superior water absorption.Extensive experiments demonstrate the effectiveness of RO-TWSA across various interactive scenarios,including teleoperation,tactile diagnostics,and robotic autonomous exploration.Overall,RO-TWSA presents a versatile and high-resolution tactile interface,offering new avenues for intelligent perception and interaction in complex real-world environments.
文摘BACKGROUND The use of induction immunosuppression agents has improved kidney transplant outcomes,but selecting the optimal agent remains a point of debate.AIM To compare the long-term outcomes of kidney transplant recipients receiving alemtuzumab vs basiliximab induction,focusing on graft function,acute rejection,infection,malignancy,post-transplant glomerulonephritis,and survival,using a propensity score matched cohort design.METHODS Kidney transplant recipients who received alemtuzumab or basiliximab induction from 2014 to 2019 across two nephrology centres in Northwest England were evaluated.Propensity score matching at a 1:1.5 ratio ensured comparability between cohorts.Baseline characteristics,immunosuppression regimens,and outcomes were analyzed.Linear,binary logistic and Cox proportional hazard regression models.RESULTS A total of 436 recipients were included,with a median follow-up of 5.2 years.The matched cohort(n=262)had a mean age of 51.1±13.5 years;39%were female and 92%were white.There was no significant difference in the cumulative incidence of acute rejection[odds ratio(OR)=2.10;95%CI:0.9-4.9;P=0.110].Compared with basiliximab,alemtuzumab was associated with lower estimated glomerular filtration rate at 12 months(-6.6 mL/minute/1.73 m2;95%CI:-10.5 to-2.7;P<0.001)and higher risks of cytomegalovirus viremia(OR=3.2;95%CI:1.6-6.5;P<0.001),BK viremia(OR=2.4;95%CI:1.1-5.5;P=0.02),post-transplant malignancy(OR=6.2;95%CI:1.6-29.9;P=0.013),and death-censored graft loss(hazard ratio=3.6;95%CI:1.2-11.4;P=0.03).No significant differences were observed in post-transplant glomerulonephritis or recipient mortality.CONCLUSION In this propensity score-matched analysis,alemtuzumab induction was associated with lower graft function at 12 months and higher risks of viral infection,post-transplant malignancy,and graft loss compared with basiliximab.These findings highlight the need for further studies to confirm the long-term safety and effectiveness of alemtuzumab in kidney transplantation.
基金supported by:Fondazione Telethon-Italy(No.GGP19128 to AP)Fondazione Cariplo-Italy(No.2021-1544 to RC)+14 种基金Fondazione Italiana di Ricerca per la Sclerosi Laterale Amiotrofica(AriSLA)-Italy(No.MLOpathy to APTarget-RAN to AP)Association Française contre les Myopathies-France(AFM Telethon No.23236 to AP)Kennedy’s Disease Association-USA(2018 grant to RC2020 grant to MG)Ministero dell’Universitàe della Ricerca(MIUR)-Italy(PRIN-Progetti di ricerca di interesse nazionale(No.2017F2A2C5 to APNo.2022EFLFL8 to APNo.2020PBS5MJ to VCNo.2022KSJZF5 to VC)PRIN-Progetti di ricerca di interesse nazionale-bando 2022,PNRR finanziato dall’Unione europea-Next Generation EU,componente M4C2,investimento 1.1(No.P2022B5J32 to RC and No.P20225R4Y5 to VC)CN3:RNA-Codice Proposta:CN_00000041Tematica Sviluppo di terapia genica e farmaci con tecnologia a RNA(Centro Nazionale di Ricerca-CN3 National Center for Gene Therapy and Drugs based on RNA Technology to AP)Progetto Dipartimenti di Eccellenza(to DiSFeB)Ministero della Salute,Agenzia Italiana del Farmaco(AIFA)-Italy(Co_ALS to AP)Universitàdegli Studi di Milano(piano di sviluppo della ricerca(PSR)UNIMI-linea B(to RC and BT).
文摘Heat shock protein family B(small)member 8(HSPB8)is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins.HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation,cell division,and migration.HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy.In line with this function,the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation.In cancer,HSPB8 has a dual role being capable of exerting either a pro-or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation.Moreover,HSPB8 exerts a protective function in different diseases by modulating the inflammatory response,which characterizes not only neurodegenerative diseases,but also other chronic or acute conditions affecting the nervous system,such as multiple sclerosis and intracerebellar hemorrhage.Of note,HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases.This is the case of cognitive impairment related to diabetes mellitus,in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis.This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions,focusing on the beneficial effects of its modulation.Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed,emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
基金supported by funding from Parkinson Canadafunded by a scholarship from Parkinson Canadaa scholarship from Fonds d’Enseignement et de Recherche (FER) (Faculty of Pharmacy, Université Laval)
文摘There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.
文摘The recent study exploring the bidirectional associations between gallstone disease,non-alcoholic fatty liver disease,and kidney stone disease highlights a critical concern in chronic disease management.Given the rising global prevalence of these conditions,understanding their interconnections is essential.The study emphasizes the importance of shared risk factors,such as obesity,type 2 diabetes,dyslipidemia,and oxidative stress,and calls for multidisciplinary screening strategies.This approach would improve patient outcomes and reduce the socio-economic burden.While the study contributes valuable insights from a Chinese population,further research across diverse populations is necessary to validate and extend these findings globally.Ultimately,the research underscores the need for integrated prevention programs to better manage these interconnected diseases and improve health outcomes.
基金supported by the European Union as a mobility grant
文摘Leaf turgor loss point has been recognized as an important plant physiological trait explaining a species’drought tolerance( π_(tlp)).Less is known about the variation of π_(tlp) in time and how seasonal or interannual differences in water availability are affecting π_(tlp) as a static trait.I monitored the seasonal variation of π_(tlp) during a drought year starting in early spring with juvenile leaves and assessed the interannual variation in π_(tlp) of fully matured leaves among years with diverting water availability for three temperate broad-leaved tree species.The largest seasonal changes in π_(tlp) occurred during leaf unfolding until leaves were fully developed and matured.After leaves matured,no significant changes occurred for the rest of the vegetation period.Interannual variation that could be related to water availability was only present in one of the three tree species.The results suggest that the investigated species have a rapid period of osmotic adjustment early in the growing season followed by a period of relative stability,when π_(tlp) can be considered as a static trait.
文摘Nitrate contamination of groundwater is a worldwide problem, particularly in agricultural countries. Exposure to high levels of nitrates in groundwater can have adverse effects on the health of residents who use groundwater for drinking. This study aims to assess the health risk associated with the ingestion of nitrates in well water in the town of M’bahiakro. Health risk maps were created on the basis of hazard quotients (HQ) using the US Environmental Protection Agency (USEPA) health risk assessment model. The results indicate that residents of the Koko, Dougouba and Baoulekro neighbourhoods, whatever their age, are potentially exposed to the toxic effects of NO3−during their daily intake of nitrate-contaminated well water, with reference to hazard quotients (HQ) greater than 1. Nitrate concentrations in the groundwater should therefore be controlled in order to prevent their harmful effects on the health of the population and guarantee its use in rice-growing activities in M’Bahiakro.
文摘The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.
文摘Vulvodynia,a chronic pain disorder affecting the vulvar region,represents a significant challenge in both diagnosis and treatment within the field of women’s health.This condition is characterized by chronic pain that significantly affects the quality of life of afflicted women.The present perspective paper examines the role of spinal sensitization and microglial activation in vulvodynia.