The stomatognathic system (SS) is a functional unit of the body that depends on the balance of several tissues. It consists of various structures, including the temporomandibular joint. Temporomandibular disorder (TMD...The stomatognathic system (SS) is a functional unit of the body that depends on the balance of several tissues. It consists of various structures, including the temporomandibular joint. Temporomandibular disorder (TMD) can occur due to alterations in the SS. The Fonseca Anamnestic Index (FAI) is a scale used to evaluate and to characterize the TMD Type: no DTM, mild, moderate and severe. The aim is to evaluate the prevalence of signs and symptoms related to TMD in university students of the Parque das Rosas Campus, Universidade Estácio de Sá that practice sports. This investigation was approved (CAAE number 325678413.9.0000.5284). Two hundred eighth students (110 male and 98 female, aged 19 - 35 years) accepted to be in this investigation. All the participants answered a General Questionnaire (GQ) and the FAI. The GQ had questions about the age, sex and the presence of TMD. The FAI was used. A statistical difference (p > 0.05) was not found about the presence of TMD. Among the female, an elevated number of the students with signal or symptoms related to the temporomandibular with statistic significance (p < 0.05) was observed. In the population without TMD, the prevalence of this disorder is higher between male than female. Considering the FAI, among the female students, there is a prevalence of the Mild Type. Considering the evaluation of the type of TMD among the male and female students no difference was found between male and female to the types mild and moderate, however, the prevalence of the severe Type is higher in female than in male with statistical significance. In conclusion, TMD is a relevant clinical condition with an important prevalence among the university students. Moreover, the type of the TMD could be considered due to prevalence of the Type Severe among the women.展开更多
Recent increases in infectious diseases affecting the central nervous system have raised concerns about their role in neuroinflammation and neurodegeneration.Viral pathogens or their products can invade the central ne...Recent increases in infectious diseases affecting the central nervous system have raised concerns about their role in neuroinflammation and neurodegeneration.Viral pathogens or their products can invade the central nervous system and cause damage,leading to meningitis,encephalitis,meningoencephalitis,myelitis,or post-infectious demyelinating diseases.Although neuroinflammation initially has a protective function,chronic inflammation can contribute to the development of neurodegenerative diseases.Mechanisms such as protein aggregation and cellular disturbances are implicated with specific viruses such as herpes simplex virus type 1 and Epstein-Barr virus being associated with Alzheimer's disease and multiple sclerosis,respectively.Extracellular nucleotides,particularly adenosine triphosphate and its metabolites are released from activated,infected,and dying cells,acting as alarmins mediating neuroinflammation and neurodegeneration.When viruses infect central nervous system cells,adenosine triphosphate is released as an alarmin,triggering inflammatory responses.This process is mediated by purinergic receptors,divided into two families:P1,which responds to adenosine,and P2,activated by adenosine triphosphate and other nucleotides.This review highlights how specific viruses,such as human immunodeficiency virus type 1,Theiler's murine encephalomyelitis virus,herpes simplex virus type 1,Epstein-Barr virus,dengue virus,Zika virus,and severe acute respiratory syndrome coronavirus 2,can initiate inflammatory responses through the release of extracellular nucleotides,particularly adenosine triphosphate,which act as critical mediators in the progression of neuroinflammation and neurodegenerative disorders.A better understanding of purinergic signaling pathways in these diseases may suggest new potential therapeutic strategies for targeting neuroinflammation to mitigate the long-term consequences of viral infections in the central nervous system.展开更多
Neuroinflammation is an inflammatory response in the central nervous system associated with various neurological conditions.The inflammatory process is typically treated with non-steroidal and steroidal anti-inflammat...Neuroinflammation is an inflammatory response in the central nervous system associated with various neurological conditions.The inflammatory process is typically treated with non-steroidal and steroidal anti-inflammatory drugs,which have a range of serious adverse effects.As an alternative,naturally derived molecules such as quercetin and its derivatives show promising anti-inflammatory properties and beneficial effects on various physiological functions.Our objective was to synthesize the evidence on the anti-inflammatory effect of quercetin and its derivatives in in vivo models,in the face of neuroinflammatory insults induced by lipopolysaccharide,through a systematic review and meta-analysis.A search of the preclinical literature was conducted across four databases(Pub Med,Web of Science,Scielo,and Google Scholar).Studies were selected based on inclusion and exclusion criteria,assessed for methodological quality using CAMARADES,and risk of bias using the SYRCLE tool,and data were extracted from the studies.The quantitative assessment of quercetin effects on the expression of pro-inflammatory cytokines and microgliosis was performed through a meta-analysis.A total of 384 potentially relevant articles were identified,of which 11 studies were included in the analysis.The methodological quality was assessed,resulting in an average score of 5.8/10,and the overall risk of bias analysis revealed a lack of methodological clarity in most studies.Furthermore,through the meta-analysis,it was observed that treatment with quercetin statistically reduces pro-inflammatory cytokines,such as tumor necrosis factor alpha,interleukin 6,interleukin 1β(n=89;SMD=–2.00;95%CI:–3.29 to–0.71),and microgliosis(n=33;SMD=–2.56;95%CI:–4.07 to–1.10).In terms of underlying mechanisms,quercetin and its derivatives exhibit antioxidant and anti-apoptotic properties,possibly through the nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 pathways,increasing the expression of antioxidant enzymes and reducing reactive species,and modulating the caspase pathway,increasing levels of anti-apoptotic proteins and decreasing proapoptotic proteins.Quercetin and its derivatives exhibit highly pleiotropic actions that simultaneously contribute to preventing neuroinflammation.However,despite promising results in animal models,future directions should focus on well-designed clinical studies to assess the safety,bioavailability,and efficacy of quercetin and its derivatives in humans.Additionally,standardization of methods and dosages in studies is crucial to ensure consistency of findings and optimize their application in clinical settings.展开更多
The intricate landscape of neurodegenerative diseases complicates the search for effective therapeutic approaches.Photoreceptor degeneration,the common endpoint in various retinal diseases,including retinitis pigmento...The intricate landscape of neurodegenerative diseases complicates the search for effective therapeutic approaches.Photoreceptor degeneration,the common endpoint in various retinal diseases,including retinitis pigmentosa and age-related macular degeneration,leads to vision loss or blindness.While primary cell death is driven by genetic mutations,oxidative stress,and neuroinflammation,additional mechanisms contribute to disease progression.In retinitis pigmentosa,a multitude of genetic alterations can trigger the degeneration of photoreceptors,while other retinopathies,such as agerelated macular degeneration,are initiated by combinations of environmental factors,such as diet,smoking,and hypertension,with genetic predispositions.Nutraceutical therapies,which blend the principles of nutrition and pharmaceuticals,aim to harness the health benefits of bioactive compounds for therapeutic applications.These compounds generally possess multi-target effects.Polyphenols and flavonoids,secondary plant metabolites abundant in plant-based foods,are known for their antioxidant,neuroprotective,and anti-inflammatory properties.This review focuses on the potential of polyphenols and flavonoids as nutraceuticals to treat neurodegenerative diseases such as retinitis pigmentosa.Furthermore,the importance of developing reliable delivery methods to enhance the bioavailability and therapeutic efficacy of these compounds will be discussed.By combining nutraceuticals with other emerging therapies,such as genetic and cell-based treatments,it is possible to offer a more comprehensive approach to treating retinal degenerative diseases.These advancements could lead to a viable and accessible option,improving the quality of life for patients with retinal diseases.展开更多
Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,par...Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,particularly palmitic acid,are potent inducers of chronic low-grade inflammation,largely due to disruptions in glucose metabolism and the onset of insulin resistance(Qiu et al.,2022).While many organs are affected,the brain,specifically the hypothalamus,is among the first to exhibit inflammation in response to an unhealthy diet,suggesting that obesity may,in fact,be a brain-centered disease with neuroinflammation as a central factor(Thaler et al., 2012).展开更多
For many decades,Alzheimer's disease research has primarily focused on impairments within cortical and hippocampal regions,which are thought to be related to cognitive dysfunctions such as memory and language defi...For many decades,Alzheimer's disease research has primarily focused on impairments within cortical and hippocampal regions,which are thought to be related to cognitive dysfunctions such as memory and language deficits.The exact cause of Alzheimer's disease is still under debate,making it challenging to establish an effective therapy or early diagnosis.It is widely accepted that the accumulation of amyloid-beta peptide in the brain parenchyma leads to synaptic dysfunction,a critical step in Alzheimer's disease development.The traditional amyloid cascade model is initiated by accumulating extracellular amyloid-beta in brain areas essential for memory and language.However,while it is possible to reduce the presence of amyloid-beta plaques in the brain with newer immunotherapies,cognitive symptoms do not necessarily improve.Interestingly,recent studies support the notion that early alterations in subcortical brain regions also contribute to brain damage and precognitive decline in Alzheimer's disease.A body of recent evidence suggests that early Alzheimer's disease is associated with alterations(e.g.,motivation,anxiety,and motor impairment)in subcortical areas,such as the striatum and amygdala,in both human and animal models.Also,recent data indicate that intracellular amyloid-beta appears early in subcortical regions such as the nucleus accumbens,locus coeruleus,and raphe nucleus,even without extracellular amyloid plaques.The reported effects are mainly excitatory,increasing glutamatergic transmission and neuronal excitability.In agreement,data in Alzheimer's disease patients and animal models show an increase in neuronal synchronization that leads to electroencephalogram disturbances and epilepsy.The data indicate that early subcortical brain dysfunctions might be associated with non-cognitive symptoms such as anxiety,irritability,and motivation deficits,which precede memory loss and language alterations.Overall,the evidence reviewed suggests that subcortical brain regions could explain early dysfunctions and perhaps be targets for therapies to slow disease progression.Future research should focus on these non-traditional brain regions to reveal early pathological alterations and underlying mechanisms to advance our understanding of Alzheimer's disease beyond the traditionally studied hippocampal and cortical circuits.展开更多
Contrary to the adult central nervous system,the peripheral nervous system has an intrinsic ability to regenerate that relies on the expression of regenerationassociated genes,such as some kinesin family members.Kines...Contrary to the adult central nervous system,the peripheral nervous system has an intrinsic ability to regenerate that relies on the expression of regenerationassociated genes,such as some kinesin family members.Kinesins contribute to nerve regeneration through the transport of specific cargo,such as proteins and membrane components,from the cell body towards the axon periphery.We show here that KIF4A,associated with neurodevelopmental disorders and previously believed to be only expressed during development,is also expressed in the adult vertebrate nervous system and up-regulated in injured peripheral nervous system cells.KIF4A is detected both in the cell bodies and regrowing axons of injured neurons,consistent with its function as an axonal transporter of cargoes such asβ1-integrin and L1CAM.Our study further demonstrates that KIF4A levels are greatly increased in Schwann cells from injured distal nerve stumps,particularly at a time when they are reprogrammed into an essential proliferative repair phenotype.Moreover,Kif4a m RNA levels were approximately~6-fold higher in proliferative cultured Schwann cells compared with non-proliferative ones.A hypothesized function for Kif4a in Schwann cell proliferation was further confirmed by Kif4a knockdown,as this significantly reduced Schwann cell proliferation in vitro.Our findings show that KIF4A is expressed in adult vertebrate nervous systems and is up-regulated following peripheral injury.The timing of KIF4A up-regulation,its location during regeneration,and its proliferative role,all suggest a dual role for this protein in neuroregeneration that is worth exploring in the future.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis...Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis plays in the pathogenesis of PD,apoptosis can be reasonably considered as one of the cell death pathways involved in neuronal loss(Schon and Przedborski,2011).Multiple lines of evidence support that proposal such as the observations in postmortem human brain samples of PD patients including mitochondrial complex I deficiency,reactive oxygen species generation,and oxidative damage to lipids,proteins,and DNA,among others.展开更多
Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disruptin...Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.展开更多
This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the fi...This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks.展开更多
Stem cell proliferation is tightly regulated in developing and adult tissues through the coordinated action of cell-intrinsic and extracellular signals.Although many extracellular cues were identified,the cell-intrins...Stem cell proliferation is tightly regulated in developing and adult tissues through the coordinated action of cell-intrinsic and extracellular signals.Although many extracellular cues were identified,the cell-intrinsic mechanisms underlying the decision of a stem cell to proliferate,enter a dormant quiescent state or differentiate into a specific cell type remains incompletely understood.展开更多
The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves gl...The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves global alterations,making understanding plastic responses triggered by local damage difficult.One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche,the subgranular zone,and beyond neurogenesis,newly born granule cells may maintain a“young”phenotype throughout life,adding to the plastic nature of the structure.Here,we present a novel experimental model of local brain damage in organotypic entorhino-hippocampal cultures that results in the activation of adjacent newly born granule cells.A small piece of filter paper was placed on the surface of the granule cell layer of the dentate gyrus,which evoked a foreign body reaction of astrocytes,along with the activation of local young neurons expressing doublecortin.Forty-eight hours after foreign body placement,the number of doublecortin-immunoreactive cells increased in the subgranular zone in the direct vicinity of the foreign body,whereas overall increased doublecortin immunoreactivity was observed in the granule cell layer and molecular layer of the dentate gyrus.Foreign body placement in the pyramidal layer of the CA1 region evoked a comparable local astroglial reaction but did not lead to an increase in doublecortin-immunoreactive in either the CA1 region or the adjacent dentate gyrus.Seven days after foreign body placement in the dentate gyrus,the increase in doublecortin-immunoreactivity was no longer observed,indicating the transient activation of young cells.However,7 days after foreign body placement,the number of doublecortin-immunoreactive granule cells coimmunoreactive for calbindin was lower than that under the control conditions.As calbindin is a marker for mature granule cells,this result suggests that activated young cells remain at a more immature stage following foreign body placement.Live imaging of retrovirally green fluorescent protein-labeled newly born granule cells revealed the orientation and growth of their dendrites toward the foreign body placement.This novel experimental model of foreign body placement in organotypic entorhino-hippocampal cultures could serve as a valuable tool for studying both glial reactivity and neuronal plasticity,specifically of newly born neurons under controlled in vitro conditions.展开更多
Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of...Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.展开更多
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive im...Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments,with astrocytes involved in this response.Following traumatic brain injury,astrocytes rapidly become reactive,and astrogliosis propagates from the injury core to distant brain regions.Homeostatic astroglial proteins are downregulated near the traumatic brain injury core,while pro-inflammatory astroglial genes are overexpressed.This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery.In addition,glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration,but in the long term impedes axonal reconnection and functional recovery.Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications.Statins,cannabinoids,progesterone,beta-blockers,and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes.In this review,we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury,especially using cell-targeted strategies with miRNAs or lncRNA,viral vectors,and repurposed drugs.展开更多
Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic ...Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.展开更多
Optimal health during pregnancy is crucial for ensuring the well-being of the mother and the developing fetus.This article is focused on the impact of oral health and the role of personalized oral hygiene management i...Optimal health during pregnancy is crucial for ensuring the well-being of the mother and the developing fetus.This article is focused on the impact of oral health and the role of personalized oral hygiene management in addressing prevalent dental issues among pregnant women,with particular emphasis on periodontal disease and dental caries.Despite the high prevalence of these dental problems and their association with obstetric complications such as pre-term birth and low birth weight,many pregnant women do not receive adequate dental care.This gap in care is often due to misconceptions about the safety of dental treat-ments during pregnancy and lack of awareness on the part of healthcare profes-sionals.Appreciations of the impacts of oral health and personalization of oral hygiene strategies such as tailored education and support,have proven effective in improving oral health in this population.Significant reductions in the incidence of caries and periodontal disease may be achieved by adapting care to the specific needs of each patient,thereby enhancing maternal and fetal health outcomes.Integration of personalized oral hygiene management into maternal health pro-grams and enhancement of ongoing education for pregnant women and healthcare professionals are essential steps in the reduction of pregnancy-related risks and improvement of maternal and neonatal well-being.Core Tip:In this article,we reviewed a recent study on the effects of personalized oral hygiene management on the oral health of pregnant women,as discussed in the article by Men et al.The study demonstrated that personalized oral hygiene interventions significantly improved oral health outcomes during pregnancy by reducing the prevalence of dental caries and periodontal disease.We emphasized the importance of individualized oral care programs that integrate education and tailored support,and we highlighted their significance in enhancing maternal and fetal health.This approach underscores the need for incorporating personalized oral hygiene management into routine prenatal care in order to optimize health outcomes.CONCLUSION This article emphasizes the critical role of personalized oral hygiene management in improving oral health during pregnancy.By tailoring oral care strategies to individual needs,significant improvements in dental health may be achieved,as evidenced by the reduced CAT scores observed in the experimental group in the study by Men et al[25].This personalized approach not only addresses common oral issues such as dental caries and periodontal disease but also underscores the broader implications for maternal and fetal health.Despite the positive results,there remains a gap in consistency in the application of oral health practices during pregnancy,partly due to misconceptions and lack of awareness among patients and healthcare providers.Future research should aim at validating these findings across diverse populations,investigating the impact of oral hygiene interventions at various stages of pregnancy,and evaluating their long-term effects on maternal and fetal health.Integrating personalized oral hygiene management into maternal health programs and promoting continuous education for pregnant women and healthcare professionals are essential steps toward enhancing overall health outcomes.By proactively managing oral health,the risks associated with pregnancy may be reduced while improving maternal and neonatal well-being.展开更多
This article examines the complex relationship between disease perception,negative emotions,and their impact on postoperative recovery in patients with perianal diseases.These conditions not only cause physical discom...This article examines the complex relationship between disease perception,negative emotions,and their impact on postoperative recovery in patients with perianal diseases.These conditions not only cause physical discomfort,but also carry a significant emotional burden,often exacerbated by social stigma.Psycho-logical factors,including stress,anxiety,and depression,activate neuroendocrine pathways,such as the hypothalamic–pituitary–adrenal axis,disrupting the gut microbiota and leading to dysbiosis.This disruption can delay wound healing,prolong hospital stay,and intensify pain.Drawing on the findings of Hou et al,our article highlights the critical role of illness perception and negative emotions in shaping recovery outcomes.It advocates for a holistic approach that integrates psychological support and gut microbiota modulation,to enhance healing and improve overall patient outcomes.展开更多
文摘The stomatognathic system (SS) is a functional unit of the body that depends on the balance of several tissues. It consists of various structures, including the temporomandibular joint. Temporomandibular disorder (TMD) can occur due to alterations in the SS. The Fonseca Anamnestic Index (FAI) is a scale used to evaluate and to characterize the TMD Type: no DTM, mild, moderate and severe. The aim is to evaluate the prevalence of signs and symptoms related to TMD in university students of the Parque das Rosas Campus, Universidade Estácio de Sá that practice sports. This investigation was approved (CAAE number 325678413.9.0000.5284). Two hundred eighth students (110 male and 98 female, aged 19 - 35 years) accepted to be in this investigation. All the participants answered a General Questionnaire (GQ) and the FAI. The GQ had questions about the age, sex and the presence of TMD. The FAI was used. A statistical difference (p > 0.05) was not found about the presence of TMD. Among the female, an elevated number of the students with signal or symptoms related to the temporomandibular with statistic significance (p < 0.05) was observed. In the population without TMD, the prevalence of this disorder is higher between male than female. Considering the FAI, among the female students, there is a prevalence of the Mild Type. Considering the evaluation of the type of TMD among the male and female students no difference was found between male and female to the types mild and moderate, however, the prevalence of the severe Type is higher in female than in male with statistical significance. In conclusion, TMD is a relevant clinical condition with an important prevalence among the university students. Moreover, the type of the TMD could be considered due to prevalence of the Type Severe among the women.
基金supported by funds from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico do Brasil(CNPq)(312286/2023-6,307201/2023-6,and Instituto Nacional Saude Cerebral INSC,No.406020/2022-1)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior(CAPES)Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro-FAPERJ(E-26/010.002260/2019,E-26/010.001652/2019,E-26/010.101036/2018,E-26/202.774/2018,E-26/210.240/2020,E-26/211.138/2021,26/210.823/2021,E-26/211.325/2021,E-26/210.779/2021,E-26/201.086/2022,E-26/210.312/2022,E-26/203.262/2023,E-26/200.195/2023)(to LEBS)。
文摘Recent increases in infectious diseases affecting the central nervous system have raised concerns about their role in neuroinflammation and neurodegeneration.Viral pathogens or their products can invade the central nervous system and cause damage,leading to meningitis,encephalitis,meningoencephalitis,myelitis,or post-infectious demyelinating diseases.Although neuroinflammation initially has a protective function,chronic inflammation can contribute to the development of neurodegenerative diseases.Mechanisms such as protein aggregation and cellular disturbances are implicated with specific viruses such as herpes simplex virus type 1 and Epstein-Barr virus being associated with Alzheimer's disease and multiple sclerosis,respectively.Extracellular nucleotides,particularly adenosine triphosphate and its metabolites are released from activated,infected,and dying cells,acting as alarmins mediating neuroinflammation and neurodegeneration.When viruses infect central nervous system cells,adenosine triphosphate is released as an alarmin,triggering inflammatory responses.This process is mediated by purinergic receptors,divided into two families:P1,which responds to adenosine,and P2,activated by adenosine triphosphate and other nucleotides.This review highlights how specific viruses,such as human immunodeficiency virus type 1,Theiler's murine encephalomyelitis virus,herpes simplex virus type 1,Epstein-Barr virus,dengue virus,Zika virus,and severe acute respiratory syndrome coronavirus 2,can initiate inflammatory responses through the release of extracellular nucleotides,particularly adenosine triphosphate,which act as critical mediators in the progression of neuroinflammation and neurodegenerative disorders.A better understanding of purinergic signaling pathways in these diseases may suggest new potential therapeutic strategies for targeting neuroinflammation to mitigate the long-term consequences of viral infections in the central nervous system.
基金supported by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil(CAPES)[Finance Code 001](to MGS)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(CNPq)fellowship[research grants 309840/2022-8]。
文摘Neuroinflammation is an inflammatory response in the central nervous system associated with various neurological conditions.The inflammatory process is typically treated with non-steroidal and steroidal anti-inflammatory drugs,which have a range of serious adverse effects.As an alternative,naturally derived molecules such as quercetin and its derivatives show promising anti-inflammatory properties and beneficial effects on various physiological functions.Our objective was to synthesize the evidence on the anti-inflammatory effect of quercetin and its derivatives in in vivo models,in the face of neuroinflammatory insults induced by lipopolysaccharide,through a systematic review and meta-analysis.A search of the preclinical literature was conducted across four databases(Pub Med,Web of Science,Scielo,and Google Scholar).Studies were selected based on inclusion and exclusion criteria,assessed for methodological quality using CAMARADES,and risk of bias using the SYRCLE tool,and data were extracted from the studies.The quantitative assessment of quercetin effects on the expression of pro-inflammatory cytokines and microgliosis was performed through a meta-analysis.A total of 384 potentially relevant articles were identified,of which 11 studies were included in the analysis.The methodological quality was assessed,resulting in an average score of 5.8/10,and the overall risk of bias analysis revealed a lack of methodological clarity in most studies.Furthermore,through the meta-analysis,it was observed that treatment with quercetin statistically reduces pro-inflammatory cytokines,such as tumor necrosis factor alpha,interleukin 6,interleukin 1β(n=89;SMD=–2.00;95%CI:–3.29 to–0.71),and microgliosis(n=33;SMD=–2.56;95%CI:–4.07 to–1.10).In terms of underlying mechanisms,quercetin and its derivatives exhibit antioxidant and anti-apoptotic properties,possibly through the nuclear factor erythroid 2-related factor 2(Nrf2)/HO-1 pathways,increasing the expression of antioxidant enzymes and reducing reactive species,and modulating the caspase pathway,increasing levels of anti-apoptotic proteins and decreasing proapoptotic proteins.Quercetin and its derivatives exhibit highly pleiotropic actions that simultaneously contribute to preventing neuroinflammation.However,despite promising results in animal models,future directions should focus on well-designed clinical studies to assess the safety,bioavailability,and efficacy of quercetin and its derivatives in humans.Additionally,standardization of methods and dosages in studies is crucial to ensure consistency of findings and optimize their application in clinical settings.
基金Fundação de AmparoàPesquisa do Estado de São Paulo(FAPESP,Brazil,#2020/11667-0)and Universidade Federal do ABC(UFABC,Brazil)were recipients of fellowships from FAPESP:THLV(#2021/11969-9 and#2024/00828-3),GBS(#2021/14227-3),and GMB(#2024/10858-7)+1 种基金recipients of fellowships from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(CAPES,Brazil):MIM(Finance Code 001,#88887.597402/2021-00)recipients of fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq,Brazil.):GKD(#145164/2024-1),and DRA(#308819/2022-5).
文摘The intricate landscape of neurodegenerative diseases complicates the search for effective therapeutic approaches.Photoreceptor degeneration,the common endpoint in various retinal diseases,including retinitis pigmentosa and age-related macular degeneration,leads to vision loss or blindness.While primary cell death is driven by genetic mutations,oxidative stress,and neuroinflammation,additional mechanisms contribute to disease progression.In retinitis pigmentosa,a multitude of genetic alterations can trigger the degeneration of photoreceptors,while other retinopathies,such as agerelated macular degeneration,are initiated by combinations of environmental factors,such as diet,smoking,and hypertension,with genetic predispositions.Nutraceutical therapies,which blend the principles of nutrition and pharmaceuticals,aim to harness the health benefits of bioactive compounds for therapeutic applications.These compounds generally possess multi-target effects.Polyphenols and flavonoids,secondary plant metabolites abundant in plant-based foods,are known for their antioxidant,neuroprotective,and anti-inflammatory properties.This review focuses on the potential of polyphenols and flavonoids as nutraceuticals to treat neurodegenerative diseases such as retinitis pigmentosa.Furthermore,the importance of developing reliable delivery methods to enhance the bioavailability and therapeutic efficacy of these compounds will be discussed.By combining nutraceuticals with other emerging therapies,such as genetic and cell-based treatments,it is possible to offer a more comprehensive approach to treating retinal degenerative diseases.These advancements could lead to a viable and accessible option,improving the quality of life for patients with retinal diseases.
文摘Obesity is widely recognized as a global epidemic,primarily driven by an imbalance between energy expenditure and caloric intake associated with a sedentary lifestyle.Diets high in carbohydrates and saturated fats,particularly palmitic acid,are potent inducers of chronic low-grade inflammation,largely due to disruptions in glucose metabolism and the onset of insulin resistance(Qiu et al.,2022).While many organs are affected,the brain,specifically the hypothalamus,is among the first to exhibit inflammation in response to an unhealthy diet,suggesting that obesity may,in fact,be a brain-centered disease with neuroinflammation as a central factor(Thaler et al., 2012).
文摘For many decades,Alzheimer's disease research has primarily focused on impairments within cortical and hippocampal regions,which are thought to be related to cognitive dysfunctions such as memory and language deficits.The exact cause of Alzheimer's disease is still under debate,making it challenging to establish an effective therapy or early diagnosis.It is widely accepted that the accumulation of amyloid-beta peptide in the brain parenchyma leads to synaptic dysfunction,a critical step in Alzheimer's disease development.The traditional amyloid cascade model is initiated by accumulating extracellular amyloid-beta in brain areas essential for memory and language.However,while it is possible to reduce the presence of amyloid-beta plaques in the brain with newer immunotherapies,cognitive symptoms do not necessarily improve.Interestingly,recent studies support the notion that early alterations in subcortical brain regions also contribute to brain damage and precognitive decline in Alzheimer's disease.A body of recent evidence suggests that early Alzheimer's disease is associated with alterations(e.g.,motivation,anxiety,and motor impairment)in subcortical areas,such as the striatum and amygdala,in both human and animal models.Also,recent data indicate that intracellular amyloid-beta appears early in subcortical regions such as the nucleus accumbens,locus coeruleus,and raphe nucleus,even without extracellular amyloid plaques.The reported effects are mainly excitatory,increasing glutamatergic transmission and neuronal excitability.In agreement,data in Alzheimer's disease patients and animal models show an increase in neuronal synchronization that leads to electroencephalogram disturbances and epilepsy.The data indicate that early subcortical brain dysfunctions might be associated with non-cognitive symptoms such as anxiety,irritability,and motivation deficits,which precede memory loss and language alterations.Overall,the evidence reviewed suggests that subcortical brain regions could explain early dysfunctions and perhaps be targets for therapies to slow disease progression.Future research should focus on these non-traditional brain regions to reveal early pathological alterations and underlying mechanisms to advance our understanding of Alzheimer's disease beyond the traditionally studied hippocampal and cortical circuits.
基金supported by the Portuguese Foundation for Science and Technology(FCT),Centro 2020 and Portugol2020 and the EU FEDER program,via the project GoBack to SIV(PTDC/CVT-CVT/32261/2017,CENTRO-01-0145-FEDER-032261)the doctoral grants of PDC(SFRH/BD/139974/2018)and BMS(2020.06525.BD and DOI 10.54499/2020.06525.BD)+5 种基金the post-doctoral grant to JPF(SFRH/BPD/113359/2015-program-contract described in paragraphs 4,5,6 of art.23 of Law no.100157/2016,of August 29,as amended by Law no.57/2017 of July 2019),the project PTDC/MED-NEU/1677/2021 to JBRthe Institute of Biomedicine iBiMED(UIDB/04501/2020 and DOI 10.54499/UIDB/04501/2020,UIDP/04501/2020 and DOI 10.54499/UIDP/04501/2020)its LiM Bioimaging Facility-a PPBI node(POCI-01-0145-FEDER-022122)supported by the Research Commission of the Medical Faculty of the Heinrich-Heine-University(HHU)Düsseldorf,of the Biologisch-Medizinisches Forschungszentrum(BMFZ)of HHUfinanced by the Spanish"Plan Nacional de Investigacion Cientifica,Desarrollo e Innovacion Tecnologica,Ministerio de Economia y Competitividad(Instituto de Salud CarlosⅢ)",co-financed by the European Union(FEDER program),(grant FIS P/20/00318 and FIS P23/00337 to VC)grant CPP2021-009070 to VC by the"Proyectos de colaboracion publico-privada,Plan de Investigacion Cientifica,Tecnica y de inovacion 2021-2023,Ministerio de Ciencia e Innovacion,Union Europea,Agencia Estatal de Investigacion,Espana"。
文摘Contrary to the adult central nervous system,the peripheral nervous system has an intrinsic ability to regenerate that relies on the expression of regenerationassociated genes,such as some kinesin family members.Kinesins contribute to nerve regeneration through the transport of specific cargo,such as proteins and membrane components,from the cell body towards the axon periphery.We show here that KIF4A,associated with neurodevelopmental disorders and previously believed to be only expressed during development,is also expressed in the adult vertebrate nervous system and up-regulated in injured peripheral nervous system cells.KIF4A is detected both in the cell bodies and regrowing axons of injured neurons,consistent with its function as an axonal transporter of cargoes such asβ1-integrin and L1CAM.Our study further demonstrates that KIF4A levels are greatly increased in Schwann cells from injured distal nerve stumps,particularly at a time when they are reprogrammed into an essential proliferative repair phenotype.Moreover,Kif4a m RNA levels were approximately~6-fold higher in proliferative cultured Schwann cells compared with non-proliferative ones.A hypothesized function for Kif4a in Schwann cell proliferation was further confirmed by Kif4a knockdown,as this significantly reduced Schwann cell proliferation in vitro.Our findings show that KIF4A is expressed in adult vertebrate nervous systems and is up-regulated following peripheral injury.The timing of KIF4A up-regulation,its location during regeneration,and its proliferative role,all suggest a dual role for this protein in neuroregeneration that is worth exploring in the future.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by the Spanish Ministerio de Ciencia e Innovación/Agencia Española de Investigación(PID2021-124096OB-I00)(to JLV)JGR was granted by Demensfonden,The Royal Physiografic Society of Lund,Neurofonden,The Greta och Johan Kocks stiftelser,and Bertil och Ebon Norlins stiftelse.
文摘Different forms of programmed cell death have been described to participate in the degeneration of dopaminergic neurons in Parkinson’s disease(PD).Given the critical role that disturbance of mitochondrial homeostasis plays in the pathogenesis of PD,apoptosis can be reasonably considered as one of the cell death pathways involved in neuronal loss(Schon and Przedborski,2011).Multiple lines of evidence support that proposal such as the observations in postmortem human brain samples of PD patients including mitochondrial complex I deficiency,reactive oxygen species generation,and oxidative damage to lipids,proteins,and DNA,among others.
基金financially supported by Ministerio de Ciencia e Innovación projects SAF2017-82736-C2-1-R to MTMFin Universidad Autónoma de Madrid and by Fundación Universidad Francisco de Vitoria to JS+2 种基金a predoctoral scholarship from Fundación Universidad Francisco de Vitoriafinancial support from a 6-month contract from Universidad Autónoma de Madrida 3-month contract from the School of Medicine of Universidad Francisco de Vitoria。
文摘Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.
基金This work is part of the‘Intelligent and Cyber-Secure Platform for Adaptive Optimization in the Simultaneous Operation of Heterogeneous Autonomous Robots(PICRAH4.0)’with reference MIG-20232082,funded by MCIN/AEI/10.13039/501100011033supported by the Universidad Internacional de La Rioja(UNIR)through the Precompetitive Research Project entitled“Nuevos Horizontes en Internet de las Cosas y NewSpace(NEWIOT)”,reference PP-2024-13,funded under the 2024 Call for Research Projects.
文摘This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks.
基金supported by a grant from NIH(R01AI132695)to RM。
文摘Chronic wasting disease—a prion disease affecting cervids:Many neurological conditions,including Alzheimer's and Parkinson's diseases,amyotrophic lateral sclerosis,frontotemporal dementias,among others,are caused by the accumulation of misfolded proteins in the brain.These diseases affect not only humans,but also animals.
基金supported by the Argentine Agency for the Promotion of Science and Technology ANPCyT(PICT2019-1472 to GP,PICT2019-4597 to FL,PICT2020-1524 to GP,and PICT2021-00627 to FL)supported by an Independent Career Position from CONICETsupported by a postdoctoral fellowship from ANPCyT。
文摘Stem cell proliferation is tightly regulated in developing and adult tissues through the coordinated action of cell-intrinsic and extracellular signals.Although many extracellular cues were identified,the cell-intrinsic mechanisms underlying the decision of a stem cell to proliferate,enter a dormant quiescent state or differentiate into a specific cell type remains incompletely understood.
基金funded by the Alexander von Humboldt Stiftungsupported by DFG (SCH W534/6-1 to SWS)
文摘The dentate gyrus of the hippocampus is a plastic structure that displays modifications at different levels in response to positive stimuli as well as to negative conditions such as brain damage.The latter involves global alterations,making understanding plastic responses triggered by local damage difficult.One key feature of the dentate gyrus is that it contains a well-defined neurogenic niche,the subgranular zone,and beyond neurogenesis,newly born granule cells may maintain a“young”phenotype throughout life,adding to the plastic nature of the structure.Here,we present a novel experimental model of local brain damage in organotypic entorhino-hippocampal cultures that results in the activation of adjacent newly born granule cells.A small piece of filter paper was placed on the surface of the granule cell layer of the dentate gyrus,which evoked a foreign body reaction of astrocytes,along with the activation of local young neurons expressing doublecortin.Forty-eight hours after foreign body placement,the number of doublecortin-immunoreactive cells increased in the subgranular zone in the direct vicinity of the foreign body,whereas overall increased doublecortin immunoreactivity was observed in the granule cell layer and molecular layer of the dentate gyrus.Foreign body placement in the pyramidal layer of the CA1 region evoked a comparable local astroglial reaction but did not lead to an increase in doublecortin-immunoreactive in either the CA1 region or the adjacent dentate gyrus.Seven days after foreign body placement in the dentate gyrus,the increase in doublecortin-immunoreactivity was no longer observed,indicating the transient activation of young cells.However,7 days after foreign body placement,the number of doublecortin-immunoreactive granule cells coimmunoreactive for calbindin was lower than that under the control conditions.As calbindin is a marker for mature granule cells,this result suggests that activated young cells remain at a more immature stage following foreign body placement.Live imaging of retrovirally green fluorescent protein-labeled newly born granule cells revealed the orientation and growth of their dendrites toward the foreign body placement.This novel experimental model of foreign body placement in organotypic entorhino-hippocampal cultures could serve as a valuable tool for studying both glial reactivity and neuronal plasticity,specifically of newly born neurons under controlled in vitro conditions.
基金supported by the Chung-Ang University Research Grants in 2023.Alsothe work is supported by the ELLIIT Excellence Center at Linköping–Lund in Information Technology in Sweden.
文摘Recommending personalized travel routes from sparse,implicit feedback poses a significant challenge,as conventional systems often struggle with information overload and fail to capture the complex,sequential nature of user preferences.To address this,we propose a Conditional Generative Adversarial Network(CGAN)that generates diverse and highly relevant itineraries.Our approach begins by constructing a conditional vector that encapsulates a user’s profile.This vector uniquely fuses embeddings from a Heterogeneous Information Network(HIN)to model complex user-place-route relationships,a Recurrent Neural Network(RNN)to capture sequential path dynamics,and Neural Collaborative Filtering(NCF)to incorporate collaborative signals from the wider user base.This comprehensive condition,further enhanced with features representing user interaction confidence and uncertainty,steers a CGAN stabilized by spectral normalization to generate high-fidelity latent route representations,effectively mitigating the data sparsity problem.Recommendations are then formulated using an Anchor-and-Expand algorithm,which selects relevant starting Points of Interest(POI)based on user history,then expands routes through latent similarity matching and geographic coherence optimization,culminating in Traveling Salesman Problem(TSP)-based route optimization for practical travel distances.Experiments on a real-world check-in dataset validate our model’s unique generative capability,achieving F1 scores ranging from 0.163 to 0.305,and near-zero pairs−F1 scores between 0.002 and 0.022.These results confirm the model’s success in generating novel travel routes by recommending new locations and sequences rather than replicating users’past itineraries.This work provides a robust solution for personalized travel planning,capable of generating novel and compelling routes for both new and existing users by learning from collective travel intelligence.
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.
基金supported by grants PICT 2019-08512017-2203,UBACYT and PIP CONICET(to AJR).
文摘Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments,with astrocytes involved in this response.Following traumatic brain injury,astrocytes rapidly become reactive,and astrogliosis propagates from the injury core to distant brain regions.Homeostatic astroglial proteins are downregulated near the traumatic brain injury core,while pro-inflammatory astroglial genes are overexpressed.This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery.In addition,glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration,but in the long term impedes axonal reconnection and functional recovery.Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications.Statins,cannabinoids,progesterone,beta-blockers,and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes.In this review,we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury,especially using cell-targeted strategies with miRNAs or lncRNA,viral vectors,and repurposed drugs.
基金supported by Fondo Nacional de Desarrollo Científico y Tecnológico(FONDECYT)#1200836,#1210644,and#1240888,and Agencia Nacional de Investigación y Desarrollo(ANID)-FONDAP#15130011(to LL)FONDECYT#3230227(to MFG).
文摘Astrocytes are the most abundant type of glial cell in the central nervous system.Upon injury and inflammation,astrocytes become reactive and undergo morphological and functional changes.Depending on their phenotypic classification as A1 or A2,reactive astrocytes contribute to both neurotoxic and neuroprotective responses,respectively.However,this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries.Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles,which emphasizes the heterogeneous nature of their reactivity.Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types,releasing cytokines,and influencing the immune response.The phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior,as evidenced by in silico,in vitro,and in vivo results.In astrocytes,inflammatory cues trigger a cascade of molecular events,where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses.Here,we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation.We highlight the involvement of various signaling pathways that regulate astrocyte reactivity,including the PI3K/AKT/mammalian target of rapamycin(mTOR),αvβ3 integrin/PI3K/AKT/connexin 43,and Notch/PI3K/AKT pathways.While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage,evidence suggests that activating this pathway could also yield beneficial outcomes.This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation.The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior.The findings should then be validated using in vivo models to ensure real-life relevance.The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage,although further studies are required to fully comprehend its role due to varying factors such as different cell types,astrocyte responses to inflammation,and disease contexts.Specific strategies are clearly necessary to address these variables effectively.
文摘Optimal health during pregnancy is crucial for ensuring the well-being of the mother and the developing fetus.This article is focused on the impact of oral health and the role of personalized oral hygiene management in addressing prevalent dental issues among pregnant women,with particular emphasis on periodontal disease and dental caries.Despite the high prevalence of these dental problems and their association with obstetric complications such as pre-term birth and low birth weight,many pregnant women do not receive adequate dental care.This gap in care is often due to misconceptions about the safety of dental treat-ments during pregnancy and lack of awareness on the part of healthcare profes-sionals.Appreciations of the impacts of oral health and personalization of oral hygiene strategies such as tailored education and support,have proven effective in improving oral health in this population.Significant reductions in the incidence of caries and periodontal disease may be achieved by adapting care to the specific needs of each patient,thereby enhancing maternal and fetal health outcomes.Integration of personalized oral hygiene management into maternal health pro-grams and enhancement of ongoing education for pregnant women and healthcare professionals are essential steps in the reduction of pregnancy-related risks and improvement of maternal and neonatal well-being.Core Tip:In this article,we reviewed a recent study on the effects of personalized oral hygiene management on the oral health of pregnant women,as discussed in the article by Men et al.The study demonstrated that personalized oral hygiene interventions significantly improved oral health outcomes during pregnancy by reducing the prevalence of dental caries and periodontal disease.We emphasized the importance of individualized oral care programs that integrate education and tailored support,and we highlighted their significance in enhancing maternal and fetal health.This approach underscores the need for incorporating personalized oral hygiene management into routine prenatal care in order to optimize health outcomes.CONCLUSION This article emphasizes the critical role of personalized oral hygiene management in improving oral health during pregnancy.By tailoring oral care strategies to individual needs,significant improvements in dental health may be achieved,as evidenced by the reduced CAT scores observed in the experimental group in the study by Men et al[25].This personalized approach not only addresses common oral issues such as dental caries and periodontal disease but also underscores the broader implications for maternal and fetal health.Despite the positive results,there remains a gap in consistency in the application of oral health practices during pregnancy,partly due to misconceptions and lack of awareness among patients and healthcare providers.Future research should aim at validating these findings across diverse populations,investigating the impact of oral hygiene interventions at various stages of pregnancy,and evaluating their long-term effects on maternal and fetal health.Integrating personalized oral hygiene management into maternal health programs and promoting continuous education for pregnant women and healthcare professionals are essential steps toward enhancing overall health outcomes.By proactively managing oral health,the risks associated with pregnancy may be reduced while improving maternal and neonatal well-being.
文摘This article examines the complex relationship between disease perception,negative emotions,and their impact on postoperative recovery in patients with perianal diseases.These conditions not only cause physical discomfort,but also carry a significant emotional burden,often exacerbated by social stigma.Psycho-logical factors,including stress,anxiety,and depression,activate neuroendocrine pathways,such as the hypothalamic–pituitary–adrenal axis,disrupting the gut microbiota and leading to dysbiosis.This disruption can delay wound healing,prolong hospital stay,and intensify pain.Drawing on the findings of Hou et al,our article highlights the critical role of illness perception and negative emotions in shaping recovery outcomes.It advocates for a holistic approach that integrates psychological support and gut microbiota modulation,to enhance healing and improve overall patient outcomes.