The SafeAmpCase is an innovative 3D-printed solution developed to address critical challenges in transporting and storing fragile glass drug ampoules during emergencies.This study employs a multidisciplinary approach...The SafeAmpCase is an innovative 3D-printed solution developed to address critical challenges in transporting and storing fragile glass drug ampoules during emergencies.This study employs a multidisciplinary approach—integrating biomedical engineering,advanced materials science,and emergency medicine expertise—to develop a compact,durable,and user-friendly ampoule case.A key innovation lies in the strategic selection of thermoplastic polyurethane(TPU)as the material,leveraging its superior impact resistance,flexibility,and noise-damping characteristics to ensure reliability under performance in demanding real-world conditions.To optimize the 3D printing process,key parameters,including printing temperature(220-250℃),volumetric flow rate(3-20 mm^(3)/s),retraction speed(30-90 mm/s),and retraction length(0.4-1.2 mm),were systematically adjusted using calibration models.The final optimized parameters(245℃,7 mm^(3)/s,90 mm/s,and 1.2 mm)reduced production time by 43%while preserving structural integrity.American Society for Testing and Materials(ASTM)international standard drop tests confirmed the case’s exceptional impact resistance,demonstrating a 90%reduction in ampoule breakage compared to polylactic acid plus.Further refinements,guided by feedback from 25 emergency professionals,resulted in medicationspecific color coding and an enhanced locking mechanism for usability in high-pressure situations.The final SafeAmpCase model withstood 18 consecutive drop trials without ampoule breakage,confirming its robustness in field conditions.This research underscores the transformative potential of additive manufacturing in developing customized,high-performance solutions for critical healthcare applications,setting a new benchmark for biomedical device design and rapid prototyping.展开更多
基金Open access funding provided by Ben-Gurion University.
文摘The SafeAmpCase is an innovative 3D-printed solution developed to address critical challenges in transporting and storing fragile glass drug ampoules during emergencies.This study employs a multidisciplinary approach—integrating biomedical engineering,advanced materials science,and emergency medicine expertise—to develop a compact,durable,and user-friendly ampoule case.A key innovation lies in the strategic selection of thermoplastic polyurethane(TPU)as the material,leveraging its superior impact resistance,flexibility,and noise-damping characteristics to ensure reliability under performance in demanding real-world conditions.To optimize the 3D printing process,key parameters,including printing temperature(220-250℃),volumetric flow rate(3-20 mm^(3)/s),retraction speed(30-90 mm/s),and retraction length(0.4-1.2 mm),were systematically adjusted using calibration models.The final optimized parameters(245℃,7 mm^(3)/s,90 mm/s,and 1.2 mm)reduced production time by 43%while preserving structural integrity.American Society for Testing and Materials(ASTM)international standard drop tests confirmed the case’s exceptional impact resistance,demonstrating a 90%reduction in ampoule breakage compared to polylactic acid plus.Further refinements,guided by feedback from 25 emergency professionals,resulted in medicationspecific color coding and an enhanced locking mechanism for usability in high-pressure situations.The final SafeAmpCase model withstood 18 consecutive drop trials without ampoule breakage,confirming its robustness in field conditions.This research underscores the transformative potential of additive manufacturing in developing customized,high-performance solutions for critical healthcare applications,setting a new benchmark for biomedical device design and rapid prototyping.