As living standards improve,the energy consumption for regulating indoor temperature keeps increasing.Windows,in particular,enhance indoor brightness but also lead to increased energy loss,especially in sunny weather....As living standards improve,the energy consumption for regulating indoor temperature keeps increasing.Windows,in particular,enhance indoor brightness but also lead to increased energy loss,especially in sunny weather.Developing a product that can maintain indoor brightness while reducing energy consumption is a challenge.We developed a facile,spectrally selective transparent ultrahigh-molecular-weight polyethylene composite film to address this trade-off.It is based on a blend of antimony-doped tin oxide and then spin-coated hydrophobic fumed silica,achieving a high visible light transmittance(>70%)and high shielding rates for ultraviolet(>90%)and near-infrared(>70%).When applied to the acrylic window of containers and placed outside,this film can cause a 10℃ temperature drop compared to a pure polymer film.Moreover,in building energy simulations,the annual energy savings could be between 14.1%~31.9%per year.The development of energy-efficient and eco-friendly transparent films is crucial for reducing energy consumption and promoting sustainability in the window environment.展开更多
Aflatoxin B1(AFB1)is a toxic fungal metabolite that contaminates almonds from cultivation to harvesting.It leads to chronic health problems and significant economic loss to the producers.Therefore,a fast and non-invas...Aflatoxin B1(AFB1)is a toxic fungal metabolite that contaminates almonds from cultivation to harvesting.It leads to chronic health problems and significant economic loss to the producers.Therefore,a fast and non-invasive detection technique is crucial for safeguarding food safety by swiftly identifying and eliminating contaminated almonds from the supply chain.Hyperspectral imaging has been explored as a potential non-destructive technology for detecting AFB1.However,the diverse geometries of almonds present a significant challenge on acquired images,thereby impacting the accuracy of the developed prediction and classification models.This study investigates the effectiveness of short-wave infrared(SwIR)hyperspectral imaging combined with deep learning for detecting AFB1 in almonds of varying geometries.Initially,partial least squares regression(PLSR)and support vector machine(SvM)regression models were evaluated for quantification,while SVM and quadratic discriminant analysis(QDA)classifiers were applied for classification.The results indicated that spectral responses varied with almond thickness,making quantification models unreliable for industrial applications.The Competitive Adaptive Reweighted Sampling(CARS)algorithm was employed to identify key spectral features for developing multi-spectral AFB1 classification models to evaluate the feasibility of high-speed,accurate in-line detection.The deep learning approach significantly outperformed traditional machine learning models,with the pre-trained Inception V3 network achieving a cross-validation accuracy of 84.82%,an F1-score of 0.8522,and an area under curve of 0.893.These findings highlight the superiority of deep learning-based hyperspectral imaging for accurate and reliable AFB1 detection in almonds with diverse shapes and thicknesses.展开更多
The Tasmanian microcontinent,situated along the East Gondwana accretionary margin during the late Neoproterozoic and early Palaeozoic,contains an unequivocal high-pressure metamorphic record comprising key information...The Tasmanian microcontinent,situated along the East Gondwana accretionary margin during the late Neoproterozoic and early Palaeozoic,contains an unequivocal high-pressure metamorphic record comprising key information pertaining to the geodynamics of subduction along the margin.Subduction of the Tasmanian microcontinent is interpreted by some as a response to back-arc basin inversion prior to ophiolite obduction and high-pressure metamorphism during the Cambrian Tyennan Orogeny.However,thermobarometric evidence in support of such a model from rocks once positioned on the subducting continental margin is lacking.Despite occurrences of eclogite-facies mineral assemblages in the strongly deformed Tyennan Region of western Tasmania,garnet-bearing quartzofeldspathic assemblages documented in metasedimentary lithologies from the remote south-west coast of Tasmania have been interpreted as an expression of low-to moderate-pressure metamorphism.We report a strongly overprinted chlorite-quartz-garnet-bearing assemblage from the southern Tyennan Region(Nye Bay)which shows evidence for high-pressure metamorphism.Coarse-grained garnet porphyroblasts contain inclusions of kyanite,muscovite,and rutile,and yield in-situ Lu-Hf dates of c.520 Ma.The cm-scale garnet porphyroblasts are zoned in the major and trace elements,preserving core-rim compositional gradients reflecting garnet growth up-pressure.Aided by mineral equilibria forward modelling,the garnet rim compositions and the Zr content of Cambrian rutile constrain peak metamorphic conditions of∼17.5-19 kbar and∼780-820℃,equivalent to warm subduction thermal gradients between 410-470℃/GPa.Garnet core compositions and the Ti content of quartz inclusions in the garnet cores constrain the pressures and temperatures for garnet nucleation to∼6-7 kbar and∼560-580℃,corresponding to relatively high prograde thermal gradients between 800-965℃/GPa.The thermal gradients determined from the south-west Tasmanian metamorphic record provide a direct window into the progressive evolution of the thermal state of the Cambrian subduction system,with the physical conditions of garnet nucleation potentially reflecting those of subduction initiation.The corresponding warm thermal gradients provide evidence for subduction initiation driven by the collapse of a pre-orogenic back-arc.This interpretation is consistent with an existing tectonic model for the Tyennan Orogeny which proposes a back-arc basin origin for the protoliths to the western Tasmanian sub-ophiolitic metamorphic sole.展开更多
From a quantum chemistry standpoint,the impact of the structural properties of the compounds on activated carbon’s adsorption ability was specifically investigated.The compounds whose adsorption behavior followed the...From a quantum chemistry standpoint,the impact of the structural properties of the compounds on activated carbon’s adsorption ability was specifically investigated.The compounds whose adsorption behavior followed the Langmuir isotherm model were selected as the research objects.An optimal quantitative structure-activity relationship(QSAR)model was built by using the multiple linear regression(MLR)method,with the saturation adsorption capacity Q_(m) from the Langmuir adsorption isotherm as the response variable and the structural parameters of 50 organic compounds as independent variables.The results show that the optimal model exhibits good stability,reliability and robustness,with a regression coefficient R^(2)of 0.88,an adjusted regression coefficient R_(adj)^(2) of 0.87,an internal validation coefficient q^(2) of 0.81,and an external validation coefficient Q_(ext)^(2) of 0.68.The variables included in the optimal model indicate that the polarity of the molecule,the molecular potential energy,and the stability and bonding strength of the organic compound are the main factors affecting the adsorption on activated carbon.The results provide key information for predicting the adsorption capacity of organic compounds on activated carbon and offer a theoretical reference for adsorption treatment in water environments.展开更多
Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissur...Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.展开更多
Microbial-induced carbonate precipitation(MICP)and enzyme-induced carbonate precipitation(EICP)are two bio-cementation techniques,which are relatively new methods of ground improvement.While both techniques share some...Microbial-induced carbonate precipitation(MICP)and enzyme-induced carbonate precipitation(EICP)are two bio-cementation techniques,which are relatively new methods of ground improvement.While both techniques share some similarities,they can exhibit different overall behaviours due to the differences in urease enzyme sources and treatment methods.This paper presented 40 unconfined compressive strength(UCS)tests of MICP and EICP treated sand specimens with similar average calcium carbonate(CaCO3)content subjected to cycles of wetting-drying(WD),freezing-thawing(FT)and elevated temperature(fire resistance test e FR and thermogravimetric analysis e TG).The average CaCO3 content after a certain number of WD or FT cycles(ACn)and their corresponding UCS(qn)reduced while the mass loss increased.The EICP treated sand specimens appeared to exhibit a lower resistance to WD and FT cycles than MICP treated specimens possibly due to the presence of unbonded or loosely bonded CaCO3 within the soil matrix,which was subsequently removed during the wetting(during WD)or thawing(during FT)process.FR test and TG analysis showed a significant loss of mass and reduction in CaCO3 content with increased temperatures,possibly due to the thermal decomposition of CaCO3.A complete deterioration of the MICP and EICP treated sand specimens was observed for temperatures above 600C.The observed behaviours are complex and theoretical understanding is far behind to develop a constitutive model to predict qn.Therefore,a multi-objective evolutionary genetic algorithm(GA)that deals with pseudo-polynomial structures,known as evolutionary polynomial regression(EPR),was used to seek three choices from millions of polynomial models.The best EPR model produced an excellent prediction of qn with a minimum sum of squares error(SSE)of 2.392,mean squared error(MSE)of 0.075,root mean square error(RMSE)of 0.273 and a maximum coefficient of determination of 0.939.展开更多
The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst asses...The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence.展开更多
Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomp...Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomposites. Since MWCNTs are now cost-effective at US$30 per kg for industrial applications, this work starts by briefly reviewing the disentanglement and surface modification of MWCNTs as well as the properties of the resulting polymer nanocomposites. GNPs can be made through the thermal treatment of graphite intercalation compounds followed by ultrasonication;GNPs would have lower cost yet higher electrical conductivity over 1,400 S cmthan MWCNTs. Through proper surface modification and compounding techniques, both types of fillers can reinforce or toughen polymers and simultaneously add anti-static performance. A high ratio of MWCNTs to GNPs would increase the synergy for polymers. Green, solvent-free systhesis methods are desired for polymer nanocomposites. Perspectives on the limitations, current challenges and future prospects are provided.展开更多
Additive manufacturing has rapidly evolved over recent years with the advent of polymer inks and those inks containing novel nanomaterials.The compatibility of polymer inks with nanomaterial inks remains a great chall...Additive manufacturing has rapidly evolved over recent years with the advent of polymer inks and those inks containing novel nanomaterials.The compatibility of polymer inks with nanomaterial inks remains a great challenge.Simple yet effective methods for interface improvement are highly sought-after to significantly enhance the functional and mechanical properties of printed polymer nanocomposites.In this study,we developed and modified a Ti_(3)C_(2) MXene ink with a siloxane surfactant to provide compatibility with a polydimethylsiloxane(PDMS)matrix.The rheology of all the inks was investigated with parameters such as complex modulus and viscosity,confirming a self-supporting ink behaviour,whilst Fourier transform infrared spectroscopy exposed the inks’reaction mechanisms.The modified MXene nanosheets have displayed strong interactions with PDMS over a wide strain amplitude.An electrical conductivity of 6.14×10^(−2) S cm^(−1) was recorded for a stretchable nanocomposite conductor containing the modified MXene ink.The nanocomposite revealed a nearly linear stress-strain relationship and a maximum stress of 0.25 MPa.Within 5%strain,the relative resistance change remained below 35%for up to 100 cycles,suggesting high flexibility,conductivity and mechanical resilience.This study creates a pathway for 3D printing conductive polymer/nanomaterial inks for multifunctional applications such as stretchable electronics and sensors.展开更多
In this study,the dredged river sediment,soft texture and fine particles,is mixed with other materials and transformed into eco-friendly autoclaved aerated concrete(hereinafter referred to as AAC)blocks.The results in...In this study,the dredged river sediment,soft texture and fine particles,is mixed with other materials and transformed into eco-friendly autoclaved aerated concrete(hereinafter referred to as AAC)blocks.The results indicated the bricks produced under the conditions of 30%–34%dredged river sediment,24%cement,10%quick lime,30%fly ash,2%gypsum and 0.09%aluminum powder with 0.5 water to material ratio,2.2 MPa autoclave pressure and 6 h autoclave time,the average compressive strength of 4.5 MPa and average dry density of 716.56 kg/m³were obtained,the two parameters(strength&density)both met the requirement of national industry standard.At the same time,the contents of dredged river sediment,cement,lime,fly ash,gypsum and aluminum powder were 15%,48%,20%,15%,2%and 0.09%,respectively,and the non-AAC block made of 0.5 water to material ratio,the average compressive strength of 3.1 MPa and average dry density of 924.19 kg/m³were obtained,the two parameters(strength&density)also met the requirement of national industry standard.In addition,the AAC block’s phase composition and morphology were micro-analyzed by SEM and XRD,the main substances in AAC block were found to be tobermorite and CSH,Among them,the chemical bond between Si-O-Si and Al-O-Al is broken,Al-O-Si is regenerated,Al substituted tobermorite with better strength is formed,and the compressive strength of AAC is further improved.展开更多
Narrow spectral response,low charge separation efficiency and slow water oxidation kinetics of TiO_(2)limit its application in photoelectrochemical and photocatalytic water splitting.Herein,a promising organic/inorgan...Narrow spectral response,low charge separation efficiency and slow water oxidation kinetics of TiO_(2)limit its application in photoelectrochemical and photocatalytic water splitting.Herein,a promising organic/inorganic composite catalyst Ag/PANI/3DOMM‐TiO_(2–x)with a three‐dimensional ordered macro‐and meso‐porous(3DO MM)structure,oxygen vacancy and Ti^(3+)defects,heterojunction formation and noble metal Ag was designed based on the Z‐scheme mechanism and successfully prepared.The Ag/PANI/3DOMM‐TiO_(2–x)ternary catalyst exhibited enhanced hydrogen production activity in both photocatalytic and photoelectrochemical water splitting.The photocatalytic hydrogen production rate is 420.90μmol g^(–1)h^(–1),which are 19.80 times and 2.06 times higher than the commercial P25 and 3DOMM‐TiO_(2),respectively.In the photoelectrochemical tests,the Ag/PANI/3DOMM‐TiO_(2–x)photoelectrode shows enhanced separation and transfer of carriers with a high current density of 1.55 mA cm^(–2)at equilibrium potential of 1.23 V under simulated AM 1.5 G illumination,which is approximately 5 times greater than the 3DOMM‐TiO_(2).The present work has demonstrated the promising potential of organic/inorganic Z‐scheme photocatalyst in driving water splitting for hydrogen production.展开更多
When choosing sites for monitoring of soil moisture for hydrological purposes,a suitable process that considers the factors influencing soil moisture level should be followed.In this study,two multi-criteria decision-...When choosing sites for monitoring of soil moisture for hydrological purposes,a suitable process that considers the factors influencing soil moisture level should be followed.In this study,two multi-criteria decision-making(MCDM)methods,the multi-influencing factor(MIF)method and the analytical hierarchy process(AHP)method,were used to identify the optimal soil moisture monitoring(SMM)sites in the Dry Creek Catchment in South Australia.The most representative areas for nine SMM sites were obtained using the MIF method,considering the factors of rainfall,soil type,land use,catchment slope,elevation,and upslope accumulated area(UAA).The AHP method was used to select the optimal sites using the site-specific criteria.30.3%of the catchment area in the Australian Water Resources Assessment Landscape(AWRA-L)Grid_DC2 can be considered acceptable as representative area with the MIF method.Four potential sites were evaluated for each AWRA-L grid using the relative weights of the site-specific criteria with the AHP method.The Grid_DC2 required two sites that had the highest overall weight chosen with the AHP analysis.The procedure was repeated for the remaining four AWRA-L grids within the study area to select the required SMM sites.展开更多
Climate change is one of the major global challenges and it can have a significant influence on the behaviour and resilience of geotechnical structures.The changes in moisture content in soil lead to effective stress ...Climate change is one of the major global challenges and it can have a significant influence on the behaviour and resilience of geotechnical structures.The changes in moisture content in soil lead to effective stress changes and can be accompanied by significant volume changes in reactive/expansive soils.The volume change leads to ground movement and can exert additional stresses on structures founded on or within a shallow depth of such soils.Climate change is likely to amplify the ground movement potential and the associated problems are likely to worsen.The effect of atmospheric boundary interaction on soil behaviour has often been correlated to Thornthwaite moisture index(TMI).In this study,the long-term weather data and anticipated future projections for various emission scenarios were used to generate a series of TMI maps for Australia.The changes in TMI were then correlated to the depth of suction change(H s),an important input in ground movement calculation.Under all climate scenarios considered,reductions in TMI and increases in H s values were observed.A hypothetical design scenario of a footing on expansive soil under current and future climate is discussed.It is observed that a design that might be considered adequate under the current climate scenario,may fail under future scenarios and accommodations should be made in the design for such events.展开更多
基金financially supported by the Natural Science Foundation of Henan(242300421010)National Natural Science Foundation of China(52403055).
文摘As living standards improve,the energy consumption for regulating indoor temperature keeps increasing.Windows,in particular,enhance indoor brightness but also lead to increased energy loss,especially in sunny weather.Developing a product that can maintain indoor brightness while reducing energy consumption is a challenge.We developed a facile,spectrally selective transparent ultrahigh-molecular-weight polyethylene composite film to address this trade-off.It is based on a blend of antimony-doped tin oxide and then spin-coated hydrophobic fumed silica,achieving a high visible light transmittance(>70%)and high shielding rates for ultraviolet(>90%)and near-infrared(>70%).When applied to the acrylic window of containers and placed outside,this film can cause a 10℃ temperature drop compared to a pure polymer film.Moreover,in building energy simulations,the annual energy savings could be between 14.1%~31.9%per year.The development of energy-efficient and eco-friendly transparent films is crucial for reducing energy consumption and promoting sustainability in the window environment.
基金the Research Training Program International(RTPi)scholarship from Commonwealth Australiathe top-up scholarship provided by SureNut Ltd.SureNut Ltd.for supplying all the almonds used in this study.
文摘Aflatoxin B1(AFB1)is a toxic fungal metabolite that contaminates almonds from cultivation to harvesting.It leads to chronic health problems and significant economic loss to the producers.Therefore,a fast and non-invasive detection technique is crucial for safeguarding food safety by swiftly identifying and eliminating contaminated almonds from the supply chain.Hyperspectral imaging has been explored as a potential non-destructive technology for detecting AFB1.However,the diverse geometries of almonds present a significant challenge on acquired images,thereby impacting the accuracy of the developed prediction and classification models.This study investigates the effectiveness of short-wave infrared(SwIR)hyperspectral imaging combined with deep learning for detecting AFB1 in almonds of varying geometries.Initially,partial least squares regression(PLSR)and support vector machine(SvM)regression models were evaluated for quantification,while SVM and quadratic discriminant analysis(QDA)classifiers were applied for classification.The results indicated that spectral responses varied with almond thickness,making quantification models unreliable for industrial applications.The Competitive Adaptive Reweighted Sampling(CARS)algorithm was employed to identify key spectral features for developing multi-spectral AFB1 classification models to evaluate the feasibility of high-speed,accurate in-line detection.The deep learning approach significantly outperformed traditional machine learning models,with the pre-trained Inception V3 network achieving a cross-validation accuracy of 84.82%,an F1-score of 0.8522,and an area under curve of 0.893.These findings highlight the superiority of deep learning-based hyperspectral imaging for accurate and reliable AFB1 detection in almonds with diverse shapes and thicknesses.
基金supported by Australian Research Council(ARC)grant DP16010437 to MH.LJM is supported by an ARC DECRA Fellowship,DE210101126.
文摘The Tasmanian microcontinent,situated along the East Gondwana accretionary margin during the late Neoproterozoic and early Palaeozoic,contains an unequivocal high-pressure metamorphic record comprising key information pertaining to the geodynamics of subduction along the margin.Subduction of the Tasmanian microcontinent is interpreted by some as a response to back-arc basin inversion prior to ophiolite obduction and high-pressure metamorphism during the Cambrian Tyennan Orogeny.However,thermobarometric evidence in support of such a model from rocks once positioned on the subducting continental margin is lacking.Despite occurrences of eclogite-facies mineral assemblages in the strongly deformed Tyennan Region of western Tasmania,garnet-bearing quartzofeldspathic assemblages documented in metasedimentary lithologies from the remote south-west coast of Tasmania have been interpreted as an expression of low-to moderate-pressure metamorphism.We report a strongly overprinted chlorite-quartz-garnet-bearing assemblage from the southern Tyennan Region(Nye Bay)which shows evidence for high-pressure metamorphism.Coarse-grained garnet porphyroblasts contain inclusions of kyanite,muscovite,and rutile,and yield in-situ Lu-Hf dates of c.520 Ma.The cm-scale garnet porphyroblasts are zoned in the major and trace elements,preserving core-rim compositional gradients reflecting garnet growth up-pressure.Aided by mineral equilibria forward modelling,the garnet rim compositions and the Zr content of Cambrian rutile constrain peak metamorphic conditions of∼17.5-19 kbar and∼780-820℃,equivalent to warm subduction thermal gradients between 410-470℃/GPa.Garnet core compositions and the Ti content of quartz inclusions in the garnet cores constrain the pressures and temperatures for garnet nucleation to∼6-7 kbar and∼560-580℃,corresponding to relatively high prograde thermal gradients between 800-965℃/GPa.The thermal gradients determined from the south-west Tasmanian metamorphic record provide a direct window into the progressive evolution of the thermal state of the Cambrian subduction system,with the physical conditions of garnet nucleation potentially reflecting those of subduction initiation.The corresponding warm thermal gradients provide evidence for subduction initiation driven by the collapse of a pre-orogenic back-arc.This interpretation is consistent with an existing tectonic model for the Tyennan Orogeny which proposes a back-arc basin origin for the protoliths to the western Tasmanian sub-ophiolitic metamorphic sole.
基金National Natural Science Foundation of China(No.21876025)National Key R&D Program of China(No.2023YFC3207204)Shanghai Municipal Education Commission Artificial Intelligence-Enabled Scientific Research Plan,China(No.SMEC-AI-DHUZ-07)。
文摘From a quantum chemistry standpoint,the impact of the structural properties of the compounds on activated carbon’s adsorption ability was specifically investigated.The compounds whose adsorption behavior followed the Langmuir isotherm model were selected as the research objects.An optimal quantitative structure-activity relationship(QSAR)model was built by using the multiple linear regression(MLR)method,with the saturation adsorption capacity Q_(m) from the Langmuir adsorption isotherm as the response variable and the structural parameters of 50 organic compounds as independent variables.The results show that the optimal model exhibits good stability,reliability and robustness,with a regression coefficient R^(2)of 0.88,an adjusted regression coefficient R_(adj)^(2) of 0.87,an internal validation coefficient q^(2) of 0.81,and an external validation coefficient Q_(ext)^(2) of 0.68.The variables included in the optimal model indicate that the polarity of the molecule,the molecular potential energy,and the stability and bonding strength of the organic compound are the main factors affecting the adsorption on activated carbon.The results provide key information for predicting the adsorption capacity of organic compounds on activated carbon and offer a theoretical reference for adsorption treatment in water environments.
基金National Natural Science Foundation of China under Grant No.52108473Project of Shaanxi Engineering Technology Research Center for Urban Geology and Underground Space under Grant No.2025KT-03Key Project of Education Department of Shaanxi Province under Grant No.23JY042。
文摘Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.
文摘Microbial-induced carbonate precipitation(MICP)and enzyme-induced carbonate precipitation(EICP)are two bio-cementation techniques,which are relatively new methods of ground improvement.While both techniques share some similarities,they can exhibit different overall behaviours due to the differences in urease enzyme sources and treatment methods.This paper presented 40 unconfined compressive strength(UCS)tests of MICP and EICP treated sand specimens with similar average calcium carbonate(CaCO3)content subjected to cycles of wetting-drying(WD),freezing-thawing(FT)and elevated temperature(fire resistance test e FR and thermogravimetric analysis e TG).The average CaCO3 content after a certain number of WD or FT cycles(ACn)and their corresponding UCS(qn)reduced while the mass loss increased.The EICP treated sand specimens appeared to exhibit a lower resistance to WD and FT cycles than MICP treated specimens possibly due to the presence of unbonded or loosely bonded CaCO3 within the soil matrix,which was subsequently removed during the wetting(during WD)or thawing(during FT)process.FR test and TG analysis showed a significant loss of mass and reduction in CaCO3 content with increased temperatures,possibly due to the thermal decomposition of CaCO3.A complete deterioration of the MICP and EICP treated sand specimens was observed for temperatures above 600C.The observed behaviours are complex and theoretical understanding is far behind to develop a constitutive model to predict qn.Therefore,a multi-objective evolutionary genetic algorithm(GA)that deals with pseudo-polynomial structures,known as evolutionary polynomial regression(EPR),was used to seek three choices from millions of polynomial models.The best EPR model produced an excellent prediction of qn with a minimum sum of squares error(SSE)of 2.392,mean squared error(MSE)of 0.075,root mean square error(RMSE)of 0.273 and a maximum coefficient of determination of 0.939.
文摘The scientific community recognizes the seriousness of rockbursts and the need for effective mitigation measures.The literature reports various successful applications of machine learning(ML)models for rockburst assessment;however,a significant question remains unanswered:How reliable are these models,and at what confidence level are classifications made?Typically,ML models output single rockburst grade even in the face of intricate and out-of-distribution samples,without any associated confidence value.Given the susceptibility of ML models to errors,it becomes imperative to quantify their uncertainty to prevent consequential failures.To address this issue,we propose a conformal prediction(CP)framework built on traditional ML models(extreme gradient boosting and random forest)to generate valid classifications of rockburst while producing a measure of confidence for its output.The proposed framework guarantees marginal coverage and,in most cases,conditional coverage on the test dataset.The CP was evaluated on a rockburst case in the Sanshandao Gold Mine in China,where it achieved high coverage and efficiency at applicable confidence levels.Significantly,the CP identified several“confident”classifications from the traditional ML model as unreliable,necessitating expert verification for informed decision-making.The proposed framework improves the reliability and accuracy of rockburst assessments,with the potential to bolster user confidence.
基金financial support by the Australian Research Council (LP180100005 & DP200101737)。
文摘Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomposites. Since MWCNTs are now cost-effective at US$30 per kg for industrial applications, this work starts by briefly reviewing the disentanglement and surface modification of MWCNTs as well as the properties of the resulting polymer nanocomposites. GNPs can be made through the thermal treatment of graphite intercalation compounds followed by ultrasonication;GNPs would have lower cost yet higher electrical conductivity over 1,400 S cmthan MWCNTs. Through proper surface modification and compounding techniques, both types of fillers can reinforce or toughen polymers and simultaneously add anti-static performance. A high ratio of MWCNTs to GNPs would increase the synergy for polymers. Green, solvent-free systhesis methods are desired for polymer nanocomposites. Perspectives on the limitations, current challenges and future prospects are provided.
基金This work was financially supported by Australian Research Council(No.DP220103275)Research Hub for Graphene Enabled Industry Transformation(No.IH150100003).
文摘Additive manufacturing has rapidly evolved over recent years with the advent of polymer inks and those inks containing novel nanomaterials.The compatibility of polymer inks with nanomaterial inks remains a great challenge.Simple yet effective methods for interface improvement are highly sought-after to significantly enhance the functional and mechanical properties of printed polymer nanocomposites.In this study,we developed and modified a Ti_(3)C_(2) MXene ink with a siloxane surfactant to provide compatibility with a polydimethylsiloxane(PDMS)matrix.The rheology of all the inks was investigated with parameters such as complex modulus and viscosity,confirming a self-supporting ink behaviour,whilst Fourier transform infrared spectroscopy exposed the inks’reaction mechanisms.The modified MXene nanosheets have displayed strong interactions with PDMS over a wide strain amplitude.An electrical conductivity of 6.14×10^(−2) S cm^(−1) was recorded for a stretchable nanocomposite conductor containing the modified MXene ink.The nanocomposite revealed a nearly linear stress-strain relationship and a maximum stress of 0.25 MPa.Within 5%strain,the relative resistance change remained below 35%for up to 100 cycles,suggesting high flexibility,conductivity and mechanical resilience.This study creates a pathway for 3D printing conductive polymer/nanomaterial inks for multifunctional applications such as stretchable electronics and sensors.
基金the National Natural Science Foundation of China(NSFC)(Nos.21876025,42177119).
文摘In this study,the dredged river sediment,soft texture and fine particles,is mixed with other materials and transformed into eco-friendly autoclaved aerated concrete(hereinafter referred to as AAC)blocks.The results indicated the bricks produced under the conditions of 30%–34%dredged river sediment,24%cement,10%quick lime,30%fly ash,2%gypsum and 0.09%aluminum powder with 0.5 water to material ratio,2.2 MPa autoclave pressure and 6 h autoclave time,the average compressive strength of 4.5 MPa and average dry density of 716.56 kg/m³were obtained,the two parameters(strength&density)both met the requirement of national industry standard.At the same time,the contents of dredged river sediment,cement,lime,fly ash,gypsum and aluminum powder were 15%,48%,20%,15%,2%and 0.09%,respectively,and the non-AAC block made of 0.5 water to material ratio,the average compressive strength of 3.1 MPa and average dry density of 924.19 kg/m³were obtained,the two parameters(strength&density)also met the requirement of national industry standard.In addition,the AAC block’s phase composition and morphology were micro-analyzed by SEM and XRD,the main substances in AAC block were found to be tobermorite and CSH,Among them,the chemical bond between Si-O-Si and Al-O-Al is broken,Al-O-Si is regenerated,Al substituted tobermorite with better strength is formed,and the compressive strength of AAC is further improved.
文摘Narrow spectral response,low charge separation efficiency and slow water oxidation kinetics of TiO_(2)limit its application in photoelectrochemical and photocatalytic water splitting.Herein,a promising organic/inorganic composite catalyst Ag/PANI/3DOMM‐TiO_(2–x)with a three‐dimensional ordered macro‐and meso‐porous(3DO MM)structure,oxygen vacancy and Ti^(3+)defects,heterojunction formation and noble metal Ag was designed based on the Z‐scheme mechanism and successfully prepared.The Ag/PANI/3DOMM‐TiO_(2–x)ternary catalyst exhibited enhanced hydrogen production activity in both photocatalytic and photoelectrochemical water splitting.The photocatalytic hydrogen production rate is 420.90μmol g^(–1)h^(–1),which are 19.80 times and 2.06 times higher than the commercial P25 and 3DOMM‐TiO_(2),respectively.In the photoelectrochemical tests,the Ag/PANI/3DOMM‐TiO_(2–x)photoelectrode shows enhanced separation and transfer of carriers with a high current density of 1.55 mA cm^(–2)at equilibrium potential of 1.23 V under simulated AM 1.5 G illumination,which is approximately 5 times greater than the 3DOMM‐TiO_(2).The present work has demonstrated the promising potential of organic/inorganic Z‐scheme photocatalyst in driving water splitting for hydrogen production.
文摘When choosing sites for monitoring of soil moisture for hydrological purposes,a suitable process that considers the factors influencing soil moisture level should be followed.In this study,two multi-criteria decision-making(MCDM)methods,the multi-influencing factor(MIF)method and the analytical hierarchy process(AHP)method,were used to identify the optimal soil moisture monitoring(SMM)sites in the Dry Creek Catchment in South Australia.The most representative areas for nine SMM sites were obtained using the MIF method,considering the factors of rainfall,soil type,land use,catchment slope,elevation,and upslope accumulated area(UAA).The AHP method was used to select the optimal sites using the site-specific criteria.30.3%of the catchment area in the Australian Water Resources Assessment Landscape(AWRA-L)Grid_DC2 can be considered acceptable as representative area with the MIF method.Four potential sites were evaluated for each AWRA-L grid using the relative weights of the site-specific criteria with the AHP method.The Grid_DC2 required two sites that had the highest overall weight chosen with the AHP analysis.The procedure was repeated for the remaining four AWRA-L grids within the study area to select the required SMM sites.
基金supported by President’s Scholarships from the University of South Australia towards his PhD study。
文摘Climate change is one of the major global challenges and it can have a significant influence on the behaviour and resilience of geotechnical structures.The changes in moisture content in soil lead to effective stress changes and can be accompanied by significant volume changes in reactive/expansive soils.The volume change leads to ground movement and can exert additional stresses on structures founded on or within a shallow depth of such soils.Climate change is likely to amplify the ground movement potential and the associated problems are likely to worsen.The effect of atmospheric boundary interaction on soil behaviour has often been correlated to Thornthwaite moisture index(TMI).In this study,the long-term weather data and anticipated future projections for various emission scenarios were used to generate a series of TMI maps for Australia.The changes in TMI were then correlated to the depth of suction change(H s),an important input in ground movement calculation.Under all climate scenarios considered,reductions in TMI and increases in H s values were observed.A hypothetical design scenario of a footing on expansive soil under current and future climate is discussed.It is observed that a design that might be considered adequate under the current climate scenario,may fail under future scenarios and accommodations should be made in the design for such events.