Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,an...Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks be...Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.展开更多
The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ...The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.展开更多
Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the...Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods.展开更多
This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures we...This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures were investigated,and bio-sealing experiments were conducted using five different cementation solution(CS)concentrations(0.25−2 M).The results showed that the RAM-based bio-sealing method can seal and bond the small aperture rock fractures with high efficiency and uniform precipitation by adjusting the CS concentration.The RAM-based bio-sealing mechanism is attributed to the following four stages:(1)fixation of bacterial flocs onto the fracture surfaces,(2)precipitation of CaCO3 onto the fracture surfaces,(3)growth of pre-precipitated CaCO3 and adhesion of new-suspended CaCO3,and(4)bridging and clogging processes.The optimal CS concentration of 1 M resulted in a fracture filling rate up to 85%,a transmissivity reduction of 4 orders of magnitude,and a shear strength ranging from 512 kPa to 688 kPa.The bio-sealing effect was found to be influenced by the CS concentration on bacterial attachment,calcium carbonate yield and calcium carbonate bulk density.The CS concentration of 1 M promoted bacterial attachment,and increased calcium carbonate yield as well as calcium carbonate bulk density,while concentrations above 1 M had the opposite effect.The bulk density of calcium carbonate played a crucial role in the sealing and bonding performance of bio-sealed fractures,particularly at comparable filling ratios and bridging areas.The bulk density was regulated by the size of calcium carbonate crystals and was determined by Ca2+concentration in the CS.This study provides valuable insights into the RAM-based bio-sealing method,highlighting its potential for efficient rock fracture leakage mitigation through precise control of CS concentration and understanding the underlying mechanisms.展开更多
Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on ...Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.展开更多
Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detectio...Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detection accuracy.Using multiple methods to carry out a comprehensive evaluation can eff ectively improve the accuracy of advanced geological prediction results.In this study,geological information is combined with the detection results of geophysical methods,including transient electromagnetic,induced polarization,and tunnel seismic prediction,to establish a comprehensive analysis method of adverse geology.First,the possible main adverse geological problems are determined according to the geological information.Subsequently,various physical parameters of the rock mass in front of the tunnel face can then be derived on the basis of multisource geophysical data.Finally,based on the analysis results of geological information,the multisource data fusion algorithm is used to determine the type,location,and scale of adverse geology.The advanced geological prediction results that can provide eff ective guidance for tunnel construction can then be obtained.展开更多
Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”C...Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.展开更多
This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are...This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.展开更多
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio...The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.展开更多
The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new mate...The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new material is extruded,the crust spreads outward,retaining its magnetization.The reversal of the polarity of the Earth's magnetic field over geologic time leads to a pattern of striped magnetic anomalies.In this study,we carry out a preliminary evaluation on how data from the Macao Science Satellite-1(MSS-1),which has a low orbital inclination,influences inversion models of the oceanic crustal magnetic field when combined with data from the Swarm mission.For our modeling we use an equivalent source method based on a cubed-sphere grid.Our model captures the broad magnetic structure over the North Atlantic Ocean and demonstrates that the trend of magnetic stripes is consistent with the age frame of the oceanic crust.The amplitude of the radial magnetic field at 450 km the North Atlantic Ocean ranges from–11 nT to+8 nT.The addition of MSS-1 observations to Swarm data generates results consistent with the overall magnetic stripe pattern.The lack of short-wavelength scale structure reveals the limitation of high-altitude satellites in portraying fine features and hence lower-altitude observations would be required to delineate a more detailed crustal signature.It is expected to obtain a finer structure of oceanic magnetic stripes by combining low-altitude CHAMP field data and east-west gradient data derived from MSS-1 in future work.展开更多
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size...It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.展开更多
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su...Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.展开更多
Soil desiccation cracking is a common phenomenon on the earth surface.Numerical modeling is an effective approach to study the desiccation cracking mechanism of soil.This work develops a novel 3D moisture diffusion di...Soil desiccation cracking is a common phenomenon on the earth surface.Numerical modeling is an effective approach to study the desiccation cracking mechanism of soil.This work develops a novel 3D moisture diffusion discrete model that is capable of dynamically assessing the effect of cracking on moisture diffusion and allowing moisture to be discontinuous on both sides of the cracks.Then,the parametric analysis of the moisture exchange coefficient in the 3D moisture diffusion discrete model is carried out for moisture diffusion in continuous media,and the selection criterion of the moisture exchange coefficient for the unbroken cohesive element is given.Subsequently,an example of moisture migration in a medium with one crack is provided to illustrate the crack hindering effect on moisture migration.Finally,combining the 3D moisture diffusion discrete model with the finite-discrete element method(FDEM),the moisture diffusion-fracture coupling model is built to study the desiccation cracking in a strip soil and the crack pattern of a rectangular soil.The evolution of crack area and volume with moisture content is quantitatively analyzed.The modeling number and average width of cracks in the strip soil show a good consistency with the experimental results,and the crack pattern of the rectangular soil matches well with the existing numerical results,validating the coupled moisture diffusion-fracture model.Additionally,the parametric study of soil desiccation cracking is performed.The developed model offers a powerful tool for exploring soil desiccation cracking.展开更多
The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic...The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.展开更多
1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-...1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-5].Understanding the rock stress state at great depths is not only an indispensable foundation for solving scientific problems associated with geology,geophysics,and geodynamics-such as plate-driving mechanisms,the earth’s energy equilibrium,earth-quake mechanisms,and tectonic activities-but also a necessary prerequisite for the evaluation,exploitation,and disposal of deep energy and resources,such as coal and metal minerals.Due to the complexity and uncertainty of the origin of in situ rock stress,it is a difficult quantity to evaluate,in comparison with other rock properties.Currently,reliable information on the stress state in a region can only be determined through field stress measurement.Therefore,a variety of stress measurement techniques have been developed and applied worldwide to provide information on crus-tal contemporary stress at specific depth ranges[6].展开更多
Introduction The widespread use of cement in concrete leads to increased carbon emissions,so the demand for supplementary cementitious materials increases significantly.Limestone powder and steel slag powder are widel...Introduction The widespread use of cement in concrete leads to increased carbon emissions,so the demand for supplementary cementitious materials increases significantly.Limestone powder and steel slag powder are widely used as supplementary cementitious materials in modern concrete.However,for UHPC and self-compacting concrete,an extremely low water/binder(W/B)ratio is on one hand a key factor in achieving ultra-high strength and ultra-low porosity of the materials,on the other hand,also leads to the deterioration of the rheological properties of the fresh paste.Meanwhile,the existing researches focus on the influence of single limestone powder or steel slag powder on the mechanical properties or microstructure of cement-based materials.Little work on the influence of steel slag powder or limestone powder on the rheological properties of composite paste at an extremely low water/binder ratio has been investigated quantitatively.The mechanism of the effect of steel slag powder or limestone powder on the rheological properties of composite paste at extremely low water/binder ratios is still unclear.In this work,the effects of steel slag powder and limestone powder on the rheological properties of composite paste at different low water/binder ratios were analyzed via determining the flow diameter,setting time,marsh cone flow time,rheological parameters,and total organic carbon content.Methods A composite paste was prepared with P.I 42.5 ordinary Portland cement,steel slag powder,limestone powder,blast furnace slag and silica fume as raw materials in a certain proportion.To achieve the preparation of composite paste with extremely low water/binder ratios,a polycarboxylate superplasticizer with a water/reducing rate of 40%(Jiangsu Subot New Materials Co.,Ltd.,China)was used.The dosage of polycarboxylate superplasticizer for the composite paste with different water/binder ratios of 0.16 and 0.21 was 2%and 0.8%,respectively.Composite pastes with different proportions of steel slag powder or limestone powder at water/binder ratios of 0.16 and 0.21 were prepared.The flow diameter(i.e.,the larger the flow diameter,the better the fluidity),setting time(i.e.,the time when the fluidity is lost)and marsh cone flow time(i.e.,the shorter the flow time,the better the fluidity)were determined to analyze the fluidity of the composite pastes.the rheological properties of composite paste at a water/binder ratio of 0.16 for rheological properties tests were determined,and the rheological parameters were obtained by the H-B model.The adsorption performance of the polycarboxylate superplasticizer was analyzed by testing the TOC content.Results and discussion When the ratio of water/binder is 0.16,both limestone powder and steel slag powder initially increase the flow diameter of the composite paste.However,the fluidity of the composite paste decreases over time,and the reduction is more pronounced with steel slag powder.This is because the nucleation and hydration promotion effect of limestone powder can reduce the loss rate of flow diameter,while the rough particles of steel slag powder increase the internal friction force,resulting in a decrease in the flow diameter of composite paste.Adding limestone powder and steel slag powder both shortens the setting time and marsh cone flow time of the composite paste.However,the steel slag powder addition of 30%delays the final setting time due to its delaying effect.Also,limestone powder can enhance the thixotropy and reduce the yield stress and plastic viscosity,thereby improving the rheological properties.In contrast,steel slag powder can increase the yield stress and plastic viscosity,thereby weakening the rheological properties and thixotropy.Steel slag powder and limestone powder both can enhance the adsorption effect of polycarboxylate superplasticizer.Steel slag powder has a stronger adsorption effect.The composite paste containing limestone powder has a higher free water content.This is because the rough and porous surface of steel slag itself and the uneven particle shape lead to the physical adsorption of polycarboxylate superplasticizer molecules on the surface of steel slag particles,thereby reducing the effective content of the water reducer dispersion.Increasing the water/binder ratio to 0.21 results in a decrease in the flow diameter of the composite paste.Furthermore,the setting time and marsh cone flow time can prolong due to the reduction in the dosage of polycarboxylate superplasticizer.Conclusions The results showed that the fluidity loss rate of composite paste with limestone powder could be lower than that of composite paste with steel slag powder.Compared to steel slag powder,the addition of limestone powder reduced the setting time and marsh cone flow time of the composite paste.The addition of limestone powder could shorten the yield stress and plastic viscosity of the composite paste.Therefore,the composite paste with limestone powder had better rheological properties and stronger thixotropy rather than that with steel slag powder.The addition of limestone powder could improve the rheological properties of the composite paste.Compared to composite paste with limestone powder,a better adsorption effect of polycarboxylate superplasticizer on the surface of the composite binder with steel slag powder could be obtained.The free water content of the composite paste with limestone powder was still higher than that of the composite paste with steel slag powder.The fluidity and rheological properties of the composite paste with limestone powder could be better.The comprehensive analysis indicated that a positive effect of limestone powder on rheological properties of composite paste at an extremely low water/binder ratio could be more dominant than that of steel slag powder.展开更多
To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Throug...To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Through dimensional analysis,four dimensionless parameters affecting the imbibition process were determined.A color gradient model of LBM was used in computation based on a real core pore size distribution.The numerical results show that the four factors have great effects on imbibition.The impact of each factor is not monotonous.The imbibition process is the comprehensive effect of all aspects.The imbibition front becomes more and more non-uniform with time in a heterogeneous pore-throat network.Some non-wetting phases(oil here)cannot be displaced out.The displacement efficiency and velocity do not change monotonously with any factor.The development of the average imbibition length with time is not smooth and not linear in a heterogeneous pore-throat network.Two fitting relations between the four dimensionless parameters and the imbibition velocity and efficiency are obtained,respectively.展开更多
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
文摘Based on inspection data,the authors analyze and summarize the main types and distribution characteristics of tunnel structural defects.These defects are classified into three types:surface defects,internal defects,and defects behind the structure.To address the need for rapid detection of different defect types,the current state of rapid detection technologies and equipment,both domestically and internationally,is systematically reviewed.The research reveals that surface defect detection technologies and equipment have developed rapidly in recent years.Notably,the integration of machine vision and laser scanning technologies have significantly improved detection efficiency and accuracy,achieving crack detection precision of up to 0.1 mm.However,the non-contact rapid detection of internal and behind-the-structure defects remains constrained by hardware limitations,with traditional detection remaining dominant.Nevertheless,phased array radar,ultrasonic,and acoustic vibration detection technologies have become research hotspots in recent years,offering promising directions for detecting these challenging defect types.Additionally,the application of multisensor fusion technology in rapid detection equipment has further enhanced detection capabilities.Devices such as cameras,3D laser scanners,infrared thermal imagers,and radar demonstrate significant advantages in rapid detection.Future research in tunnel inspection should prioritize breakthroughs in rapid detection technologies for internal and behind-the-structure defects.Efforts should also focus on developing multifunctional integrated detection vehicles that can simultaneously inspect both surface and internal structures.Furthermore,progress in fully automated,intelligent systems with precise defect identification and real-time reporting will be essential to significantly improve the efficiency and accuracy of tunnel inspection.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金financially supported by,the Fundamental Research Funds for the Central Universities(Grant No.2023QN1064)the China Postdoctoral Science Foundation(Grant No.2023M733772)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB847)。
文摘Prepulse combined hydraulic fracturing facilitates the development of fracture networks by integrating prepulse hydraulic loading with conventional hydraulic fracturing.The formation mechanisms of fracture networks between hydraulic and pre-existing fractures under different prepulse loading parameters remain unclear.This research investigates the impact of prepulse loading parameters,including the prepulse loading number ratio(C),prepulse loading stress ratio(S),and prepulse loading frequency(f),on the formation of fracture networks between hydraulic and pre-existing fractures,using both experimental and numerical methods.The results suggest that low prepulse loading stress ratios and high prepulse loading number ratios are advantageous loading modes.Multiple hydraulic fractures are generated in the specimen under the advantageous loading modes,facilitating the development of a complex fracture network.Fatigue damage occurs in the specimen at the prepulse loading stage.The high water pressure at the secondary conventional hydraulic fracturing promotes the growth of hydraulic fractures along the damage zones.This allows the hydraulic fractures to propagate deeply and interact with pre-existing fractures.Under advantageous loading conditions,multiple hydraulic fractures can extend to pre-existing fractures,and these hydraulic fractures penetrate or propagate along pre-existing fractures.Especially when the approach angle is large,the damage range in the specimen during the prepulse loading stage increases,resulting in the formation of more hydraulic fractures.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20266 and 12302503)Scientific and technological research projects in Sichuan province(Grant No.2024NSFSC0973).
文摘The loaded rock experiences multiple stages of deformation.It starts with the formation of microcracks at low stresses(crack initiation,CI)and then transitions into unstable crack propagation(crack damage,CD)near the ultimate strength.In this study,both the acoustic emission method(AEM)and the ultrasonic testing method(UTM)were used to examine the characteristics of AE parameters(b-value,peak frequency,frequency-band energy ratio,and fractal dimension)and ultrasonic(ULT)properties(velocity,amplitude,energy attenuation,and scattering attenuation)of bedded shale at CI,CD,and ultimate strength.The comparison involved analyzing the strain-based method(SBM),AEM,and UTM to determine the thresholds for damage stress.A fuzzy comprehensive evaluation model(FCEM)was created to describe the damage thresholds and hazard assessment.The results indicate that the optimal AE and ULT parameters for identifying CI and CD stress are ringing count,ultrasonic amplitude,energy attenuation,and scattering attenuation of the S-wave.Besides,damage thresholds were detected earlier by AE monitoring,ranging from 3 MPa to 10 MPa.CI and CD identified by UTM occurred later than SBM and AEM,and were in the range of 12 MPa.The b-value,peak frequency,energy ratio in the low-frequency band(0e62.5 kHz),correlation dimension,and sandbox dimension showed low values at the peak stress,while the energy ratio in a moderate-frequency band(187.5e281.25 kHz)and amplitude showed high values.The successful application of FCEM to laboratory testing of shales has demonstrated its ability to quantitatively identify AE/ULT precursors of seismic hazards associated with rock failure.
基金supported by the National Natural Science Foundation of China(Nos.51827901,42477191,and 52304033)the Fundamental Research Funds for the Central Universities(No.YJ202449)+1 种基金the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME022009)the China Postdoctoral Science Foundation(No.2023M742446).
文摘Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods.
基金supported by the National Natural Science Foundation of China(Grant No.41925012)Key task project for joint research and development of the Yangtze River Delta Science and Technology Innovation Community(Grant No.2022CSJGG1200)State Key Laboratory for GeoMechanics and Deep Underground Engineering(Grant No.SKLGDUEK2214).
文摘This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures were investigated,and bio-sealing experiments were conducted using five different cementation solution(CS)concentrations(0.25−2 M).The results showed that the RAM-based bio-sealing method can seal and bond the small aperture rock fractures with high efficiency and uniform precipitation by adjusting the CS concentration.The RAM-based bio-sealing mechanism is attributed to the following four stages:(1)fixation of bacterial flocs onto the fracture surfaces,(2)precipitation of CaCO3 onto the fracture surfaces,(3)growth of pre-precipitated CaCO3 and adhesion of new-suspended CaCO3,and(4)bridging and clogging processes.The optimal CS concentration of 1 M resulted in a fracture filling rate up to 85%,a transmissivity reduction of 4 orders of magnitude,and a shear strength ranging from 512 kPa to 688 kPa.The bio-sealing effect was found to be influenced by the CS concentration on bacterial attachment,calcium carbonate yield and calcium carbonate bulk density.The CS concentration of 1 M promoted bacterial attachment,and increased calcium carbonate yield as well as calcium carbonate bulk density,while concentrations above 1 M had the opposite effect.The bulk density of calcium carbonate played a crucial role in the sealing and bonding performance of bio-sealed fractures,particularly at comparable filling ratios and bridging areas.The bulk density was regulated by the size of calcium carbonate crystals and was determined by Ca2+concentration in the CS.This study provides valuable insights into the RAM-based bio-sealing method,highlighting its potential for efficient rock fracture leakage mitigation through precise control of CS concentration and understanding the underlying mechanisms.
基金support from the National Natural Science Foundation of China(Grant Nos:52379103 and 52279103)the Natural Science Foundation of Shandong Province(Grant No:ZR2023YQ049).
文摘Bayesian-optimized lithology identification has important basic geological research significance and engineering application value,and this paper proposes a Bayesian-optimized lithology identification method based on machine learning of rock visible and near-infrared spectral data.First,the rock spectral data are preprocessed using Savitzky-Golay(SG)smoothing to remove the noise of the spectral data;then,the preprocessed rock spectral data are downscaled using Principal Component Analysis(PCA)to reduce the redundancy of the data,optimize the effective discriminative information,and obtain the rock spectral features;finally,a Bayesian-optimized lithology identification model is established based on rock spectral features,optimize the model hyperparameters using Bayesian optimization(BO)algorithm to avoid the combination of hyperparameters falling into the local optimal solution,and output the predicted type of rock,so as to realize the Bayesian-optimized lithology identification.In addition,this paper conducts comparative analysis on models based on Artificial Neural Network(ANN)/Random Forest(RF),dimensionality reduction/full band,and optimization algorithms.It uses the confusion matrix,accuracy,Precison(P),Recall(R)and F_(1)values(F_(1))as the evaluation indexes of model accuracy.The results indicate that the lithology identification model optimized by the BO-ANN after dimensionality reduction achieves an accuracy of up to 99.80%,up to 99.79%and up to 99.79%.Compared with the BO-RF model,it has higher identification accuracy and better stability for each type of rock identification.The experiments and reliability analysis show that the Bayesian-optimized lithology identification method proposed in this paper has good robustness and generalization performance,which is of great significance for realizing fast,accurate and Bayesian-optimized lithology identification in tunnel site.
基金National Natural Science Foundation of China(grant numbers 42293351,41877239,51422904 and 51379112).
文摘Advanced geological prediction is a crucial means to ensure safety and efficiency in tunnel construction.However,diff erent advanced geological forecasting methods have their own limitations,resulting in poor detection accuracy.Using multiple methods to carry out a comprehensive evaluation can eff ectively improve the accuracy of advanced geological prediction results.In this study,geological information is combined with the detection results of geophysical methods,including transient electromagnetic,induced polarization,and tunnel seismic prediction,to establish a comprehensive analysis method of adverse geology.First,the possible main adverse geological problems are determined according to the geological information.Subsequently,various physical parameters of the rock mass in front of the tunnel face can then be derived on the basis of multisource geophysical data.Finally,based on the analysis results of geological information,the multisource data fusion algorithm is used to determine the type,location,and scale of adverse geology.The advanced geological prediction results that can provide eff ective guidance for tunnel construction can then be obtained.
文摘Beishan Rock Carvings in Chongqing,a renowned cultural heritage site in China,flourished during the Tang and Song dynasties and are often referred to as the“Stone Carving Art Museum of the Tang and Song Dynasties.”Cave 168 is a key component of the Beishan Rock Carvings.At present,several through-going cracks have developed in the roof of Cave 168,severely compromising the structural stability of the grotto.The early internal steel plate supports have suffered severe corrosion and can no longer provide effective reinforcement.In addition,the presence of steel columns obstructs visitor access and negatively affects the viewing experience.A new reinforcement method is urgently needed.Therefore,studying the deformation patterns of the structure is of critical importance.This study analyzes the stratigraphic parameters and fracture distribution of Cave 168,considering key influencing factors such as rainfall,self-weight,and the overlying Quaternary soil.On-site monitoring and physical model experiments were conducted to evaluate the changes in roof crack width and displacement before and after reinforcement with negative Poisson's ratio(NPR)anchor cables.The results reveal that the roof of Cave 168 contains several through-going cracks and numerous microcracks,which serve as infiltration channels for surface water.These accelerate the softening of the mudstone and pose a significant threat to the cave's structural safety.During the experiment,the main change in the crack exhibited a“semi-archshaped”propagation pattern.In the first ten minutes,as the rock transitioned from dry to moist conditions,a slight crack closure was observed.As rainfall continued,crack propagation accelerated.After rainfall ceased,crack width remained stable over a short period.Under NPR anchor support,the influence of rainfall on roof settlement was effectively mitigated,ensuring the safety and stability of the roof.The NPR anchors successfully limited the roof settlement to within 0.3 mm and provided effective control over both total and differential settlement.These findings offer valuable insights into the application of NPR anchor cables in the conservation of grotto heritage structures.
基金supported by the National Natural Science Foundation of China Youth Science Foundation of China(Grant No.52308388)the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210).
文摘This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.
基金financially supported by the National Natural Science Foundation of China(Nos.52174092,51904290,and 52374147)the Natural Science Foundation of Jiangsu Province,China(No.BK20220157)+2 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)the National Key Research and Development Program of China(No.2023YFC3804204)the Major Program of Xinjiang Uygur Autonomous Region S cience and Technology(No.2023A01002)。
文摘The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure.
基金supported by the National Natural Science Foundation of China(42250101,42250102,42250103)the Macao Foundation,and the Science and Technology Development Fund,Macao SAR(File No.0002/2019/APD)。
文摘The Earth's crust,the outer shell of the Earth,consists of continental crust and oceanic crust.Oceanic crust is created at the mid-oceanic ridge,where it is magnetized in the ambient field of the Earth.As new material is extruded,the crust spreads outward,retaining its magnetization.The reversal of the polarity of the Earth's magnetic field over geologic time leads to a pattern of striped magnetic anomalies.In this study,we carry out a preliminary evaluation on how data from the Macao Science Satellite-1(MSS-1),which has a low orbital inclination,influences inversion models of the oceanic crustal magnetic field when combined with data from the Swarm mission.For our modeling we use an equivalent source method based on a cubed-sphere grid.Our model captures the broad magnetic structure over the North Atlantic Ocean and demonstrates that the trend of magnetic stripes is consistent with the age frame of the oceanic crust.The amplitude of the radial magnetic field at 450 km the North Atlantic Ocean ranges from–11 nT to+8 nT.The addition of MSS-1 observations to Swarm data generates results consistent with the overall magnetic stripe pattern.The lack of short-wavelength scale structure reveals the limitation of high-altitude satellites in portraying fine features and hence lower-altitude observations would be required to delineate a more detailed crustal signature.It is expected to obtain a finer structure of oceanic magnetic stripes by combining low-altitude CHAMP field data and east-west gradient data derived from MSS-1 in future work.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation (Grant No.2022M712243)the Fundamental Research Funds for the Central Universities (Grant No.2023SCU12098).
文摘It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(Grant No.42225206)National Natural Science Foundation of China(42207180,42477209,42302320).
文摘Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring.
基金supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering(Grant No.SKLGDUEK2206)National Natural Science Foundation of China(Grant No.11872340).
文摘Soil desiccation cracking is a common phenomenon on the earth surface.Numerical modeling is an effective approach to study the desiccation cracking mechanism of soil.This work develops a novel 3D moisture diffusion discrete model that is capable of dynamically assessing the effect of cracking on moisture diffusion and allowing moisture to be discontinuous on both sides of the cracks.Then,the parametric analysis of the moisture exchange coefficient in the 3D moisture diffusion discrete model is carried out for moisture diffusion in continuous media,and the selection criterion of the moisture exchange coefficient for the unbroken cohesive element is given.Subsequently,an example of moisture migration in a medium with one crack is provided to illustrate the crack hindering effect on moisture migration.Finally,combining the 3D moisture diffusion discrete model with the finite-discrete element method(FDEM),the moisture diffusion-fracture coupling model is built to study the desiccation cracking in a strip soil and the crack pattern of a rectangular soil.The evolution of crack area and volume with moisture content is quantitatively analyzed.The modeling number and average width of cracks in the strip soil show a good consistency with the experimental results,and the crack pattern of the rectangular soil matches well with the existing numerical results,validating the coupled moisture diffusion-fracture model.Additionally,the parametric study of soil desiccation cracking is performed.The developed model offers a powerful tool for exploring soil desiccation cracking.
基金supported by the National Natural Science Foundation of China (41804067, 42174090, 42250101, and 42250103)the Science Research Project of the Hebei Education Department (BJK2024107)+3 种基金the Hebei Natural Science Foundation (D2022403044)the Opening Fund of the Key Laboratory of Geological Survey and Evaluation of the Ministry of Education (GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (MSFGPMR2022-4)the Excellent Young Scientist Fund of Hebei GEO University (YQ202403)。
文摘The lithospheric magnetic field is an important component of the geomagnetic field,and the oceanic lithosphere exhibits distinct characteristics.Because of its formation mechanisms,evolutionary history,and geomagnetic field polarity reversals,the oceanic lithosphere has significant remanent magnetization,which causes magnetic anomaly stripes parallel to the mid-ocean ridges.However,it is difficult to construct a high-resolution lithospheric magnetic field model in oceanic regions with relatively sparse data or no data.Using forward calculated lithospheric magnetic field data based on an oceanic remanent magnetization(ORM) model with physical and geological foundations as a supplement is a feasible approach.We first collect the latest available oceanic crust age grid,plate motion model,geomagnetic polarity timescale,and oceanic lithosphere thermal structure.Combining the assumptions that the paleo geomagnetic field is a geocentric axial dipole field and that the normal oceanic crust moves only in the horizontal direction,we construct a vertically integrated ORM model of the normal oceanic crust with a known age,including the intensity,inclination,and declination.Both the ORM model and the global induced magnetization(GIM) model are then scaled from two aspects between their forward calculated results and the lithospheric magnetic field model LCS-1.One aspect is the difference in their spherical harmonic power spectra,and the other is the misfit between the grid data over the oceans.We last compare the forward calculated lithospheric magnetic anomaly from the scaled ORM and GIM models with the Macao Science Satellite-1(MSS-1) observed data.The comparison results show that the magnetic anomalies over the normal oceanic crust regions at satellite altitude are mainly contributed by the high-intensity remanent magnetization corresponding to the Cretaceous magnetic quiet period.In these regions,the predicted and observed anomalies show good consistency in spatial distribution,whereas their amplitude differences vary across regions.This result suggests that regional ORM construction should be attempted in future work to address these amplitude discrepancies.
基金financially supported by the National Key Research and Development Program of China(2022YFC3004601)the National Natural Science Foundation of China(52204084)the Science,Technology and Innovation Project of Xiongan New Area(2023XAGG0061).
文摘1.Introduction Various geological phenomena on the surface and in the interior of the Earth,as well as their associated physical and chemical pro-cesses,are closely correlated with the action of in situ rock stress[1-5].Understanding the rock stress state at great depths is not only an indispensable foundation for solving scientific problems associated with geology,geophysics,and geodynamics-such as plate-driving mechanisms,the earth’s energy equilibrium,earth-quake mechanisms,and tectonic activities-but also a necessary prerequisite for the evaluation,exploitation,and disposal of deep energy and resources,such as coal and metal minerals.Due to the complexity and uncertainty of the origin of in situ rock stress,it is a difficult quantity to evaluate,in comparison with other rock properties.Currently,reliable information on the stress state in a region can only be determined through field stress measurement.Therefore,a variety of stress measurement techniques have been developed and applied worldwide to provide information on crus-tal contemporary stress at specific depth ranges[6].
文摘Introduction The widespread use of cement in concrete leads to increased carbon emissions,so the demand for supplementary cementitious materials increases significantly.Limestone powder and steel slag powder are widely used as supplementary cementitious materials in modern concrete.However,for UHPC and self-compacting concrete,an extremely low water/binder(W/B)ratio is on one hand a key factor in achieving ultra-high strength and ultra-low porosity of the materials,on the other hand,also leads to the deterioration of the rheological properties of the fresh paste.Meanwhile,the existing researches focus on the influence of single limestone powder or steel slag powder on the mechanical properties or microstructure of cement-based materials.Little work on the influence of steel slag powder or limestone powder on the rheological properties of composite paste at an extremely low water/binder ratio has been investigated quantitatively.The mechanism of the effect of steel slag powder or limestone powder on the rheological properties of composite paste at extremely low water/binder ratios is still unclear.In this work,the effects of steel slag powder and limestone powder on the rheological properties of composite paste at different low water/binder ratios were analyzed via determining the flow diameter,setting time,marsh cone flow time,rheological parameters,and total organic carbon content.Methods A composite paste was prepared with P.I 42.5 ordinary Portland cement,steel slag powder,limestone powder,blast furnace slag and silica fume as raw materials in a certain proportion.To achieve the preparation of composite paste with extremely low water/binder ratios,a polycarboxylate superplasticizer with a water/reducing rate of 40%(Jiangsu Subot New Materials Co.,Ltd.,China)was used.The dosage of polycarboxylate superplasticizer for the composite paste with different water/binder ratios of 0.16 and 0.21 was 2%and 0.8%,respectively.Composite pastes with different proportions of steel slag powder or limestone powder at water/binder ratios of 0.16 and 0.21 were prepared.The flow diameter(i.e.,the larger the flow diameter,the better the fluidity),setting time(i.e.,the time when the fluidity is lost)and marsh cone flow time(i.e.,the shorter the flow time,the better the fluidity)were determined to analyze the fluidity of the composite pastes.the rheological properties of composite paste at a water/binder ratio of 0.16 for rheological properties tests were determined,and the rheological parameters were obtained by the H-B model.The adsorption performance of the polycarboxylate superplasticizer was analyzed by testing the TOC content.Results and discussion When the ratio of water/binder is 0.16,both limestone powder and steel slag powder initially increase the flow diameter of the composite paste.However,the fluidity of the composite paste decreases over time,and the reduction is more pronounced with steel slag powder.This is because the nucleation and hydration promotion effect of limestone powder can reduce the loss rate of flow diameter,while the rough particles of steel slag powder increase the internal friction force,resulting in a decrease in the flow diameter of composite paste.Adding limestone powder and steel slag powder both shortens the setting time and marsh cone flow time of the composite paste.However,the steel slag powder addition of 30%delays the final setting time due to its delaying effect.Also,limestone powder can enhance the thixotropy and reduce the yield stress and plastic viscosity,thereby improving the rheological properties.In contrast,steel slag powder can increase the yield stress and plastic viscosity,thereby weakening the rheological properties and thixotropy.Steel slag powder and limestone powder both can enhance the adsorption effect of polycarboxylate superplasticizer.Steel slag powder has a stronger adsorption effect.The composite paste containing limestone powder has a higher free water content.This is because the rough and porous surface of steel slag itself and the uneven particle shape lead to the physical adsorption of polycarboxylate superplasticizer molecules on the surface of steel slag particles,thereby reducing the effective content of the water reducer dispersion.Increasing the water/binder ratio to 0.21 results in a decrease in the flow diameter of the composite paste.Furthermore,the setting time and marsh cone flow time can prolong due to the reduction in the dosage of polycarboxylate superplasticizer.Conclusions The results showed that the fluidity loss rate of composite paste with limestone powder could be lower than that of composite paste with steel slag powder.Compared to steel slag powder,the addition of limestone powder reduced the setting time and marsh cone flow time of the composite paste.The addition of limestone powder could shorten the yield stress and plastic viscosity of the composite paste.Therefore,the composite paste with limestone powder had better rheological properties and stronger thixotropy rather than that with steel slag powder.The addition of limestone powder could improve the rheological properties of the composite paste.Compared to composite paste with limestone powder,a better adsorption effect of polycarboxylate superplasticizer on the surface of the composite binder with steel slag powder could be obtained.The free water content of the composite paste with limestone powder was still higher than that of the composite paste with steel slag powder.The fluidity and rheological properties of the composite paste with limestone powder could be better.The comprehensive analysis indicated that a positive effect of limestone powder on rheological properties of composite paste at an extremely low water/binder ratio could be more dominant than that of steel slag powder.
基金supported by the National Natural Science Foundation of China(12072347)the Excellent Training Plan of the Institute of Mechanics,Chinese Academy of SciencesCNPC New Energy Key Project(2021DJ4902).
文摘To study the development of imbibition such as the imbibition front and phase distribution in shale,the Lattice Boltzmann Method(LBM)is used to study the imbibition processes in the pore-throat network of shale.Through dimensional analysis,four dimensionless parameters affecting the imbibition process were determined.A color gradient model of LBM was used in computation based on a real core pore size distribution.The numerical results show that the four factors have great effects on imbibition.The impact of each factor is not monotonous.The imbibition process is the comprehensive effect of all aspects.The imbibition front becomes more and more non-uniform with time in a heterogeneous pore-throat network.Some non-wetting phases(oil here)cannot be displaced out.The displacement efficiency and velocity do not change monotonously with any factor.The development of the average imbibition length with time is not smooth and not linear in a heterogeneous pore-throat network.Two fitting relations between the four dimensionless parameters and the imbibition velocity and efficiency are obtained,respectively.
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.