With changing climate and farmland ecological conditions,pest outbreaks in agricultural landscapes are becoming more frequent,increasing the need for improved crop production tools and methods.UAV-based agricultural s...With changing climate and farmland ecological conditions,pest outbreaks in agricultural landscapes are becoming more frequent,increasing the need for improved crop production tools and methods.UAV-based agricultural spraying is anticipated to be an important new technology for providing efficient and effective applications of crop protection products.This paper reviews and summarizes the status of the current research and progress on UAV application technologies for plant protection,and it discusses the characteristics of atomization by unmanned aircraft application systems with a focus on spray applications of agrichemicals.Additionally,the factors influencing the spraying performance including downwash airflow field and operating parameters are analyzed,and a number of key technologies for reducing drift and enhancing the application efficiency such as remote sensing,variable-rate technologies,and spray drift models are considered.Based on the reviewed literature,future developments and the impacts of these UAV technologies are projected.This review may inspire the innovation of the combined use of big data analytics and UAV technology,precision agricultural spraying technology,drift reduction technology,swarm UAV cooperative technology,and other supporting technologies for UAV-based aerial spraying for scientific research in the world.展开更多
Adult corn earworm, Helicoverpa zea (Boddie), feeds on plant exudates soon after emergence from pupa in their natural habitat, and thereafter disperses to suitable host plants for reproduction. The intent of this stud...Adult corn earworm, Helicoverpa zea (Boddie), feeds on plant exudates soon after emergence from pupa in their natural habitat, and thereafter disperses to suitable host plants for reproduction. The intent of this study was to determine if EntrustTM, an organic formulation of spinosad, could be used in a behavioral-based pest management strategy to control H. zea in organic farming systems. In the laboratory, we evaluated the response of the corn earworm to Entrust mixed with sugar solution relative to ingestion, toxicity and proboscis extension. The sucrose solution served as a feeding stimulant and simulated the plant exudate. Lethal concentration of Entrust (LC50 with 95% CLs) for male corn earworm captured in pheromone-baited traps was 0.48 (0.43 - 0.53) mgL-1 for 24 h response. Mean lethal time was 2.56 ± 0.13 h with ingestion of Entrust at 50 mg·L-1. A lethal dose of Entrust at 1000 mg·L-1 inhibited neither ingestion nor proboscis extension response of the insect. A detailed study of the adult corn earworm in the laboratory relative to toxicity after ingestion of Entrust indicates that the pesticide has potential to control the insect when used in an insecticidal bait formulation as part of an attract-and- kill system. Field studies are needed to support the conclusion.展开更多
基金The authors gratefully acknowledge the support provided by the National Key Research and Development Program of China(Grant No.2016YFD0200606,Grant No.2018YFD0200700)China Agriculture Research System(Grant No.CARS-15-22).
文摘With changing climate and farmland ecological conditions,pest outbreaks in agricultural landscapes are becoming more frequent,increasing the need for improved crop production tools and methods.UAV-based agricultural spraying is anticipated to be an important new technology for providing efficient and effective applications of crop protection products.This paper reviews and summarizes the status of the current research and progress on UAV application technologies for plant protection,and it discusses the characteristics of atomization by unmanned aircraft application systems with a focus on spray applications of agrichemicals.Additionally,the factors influencing the spraying performance including downwash airflow field and operating parameters are analyzed,and a number of key technologies for reducing drift and enhancing the application efficiency such as remote sensing,variable-rate technologies,and spray drift models are considered.Based on the reviewed literature,future developments and the impacts of these UAV technologies are projected.This review may inspire the innovation of the combined use of big data analytics and UAV technology,precision agricultural spraying technology,drift reduction technology,swarm UAV cooperative technology,and other supporting technologies for UAV-based aerial spraying for scientific research in the world.
文摘Adult corn earworm, Helicoverpa zea (Boddie), feeds on plant exudates soon after emergence from pupa in their natural habitat, and thereafter disperses to suitable host plants for reproduction. The intent of this study was to determine if EntrustTM, an organic formulation of spinosad, could be used in a behavioral-based pest management strategy to control H. zea in organic farming systems. In the laboratory, we evaluated the response of the corn earworm to Entrust mixed with sugar solution relative to ingestion, toxicity and proboscis extension. The sucrose solution served as a feeding stimulant and simulated the plant exudate. Lethal concentration of Entrust (LC50 with 95% CLs) for male corn earworm captured in pheromone-baited traps was 0.48 (0.43 - 0.53) mgL-1 for 24 h response. Mean lethal time was 2.56 ± 0.13 h with ingestion of Entrust at 50 mg·L-1. A lethal dose of Entrust at 1000 mg·L-1 inhibited neither ingestion nor proboscis extension response of the insect. A detailed study of the adult corn earworm in the laboratory relative to toxicity after ingestion of Entrust indicates that the pesticide has potential to control the insect when used in an insecticidal bait formulation as part of an attract-and- kill system. Field studies are needed to support the conclusion.