Purpose: Microgravity is known to cause endothelium dysfunction in astronauts returning from spaceflight. We aimed to reveal the regulatory mechanism in alterations of human endothelial cells after simulated microgra...Purpose: Microgravity is known to cause endothelium dysfunction in astronauts returning from spaceflight. We aimed to reveal the regulatory mechanism in alterations of human endothelial cells after simulated microgravity (SMG). Methods: We utilized the rotary cell culture system (RCCS-1) to explore the subsequent effects of SMG on human umbilical vein endothelial cells (HUVECs). Results: SMG-treated HUVECs appeared obvious growth inhibition after return to normal gravity, which might be attributed to a set of responses including alteration of cytoskeleton, decreased cell adhesion capacity and increased apoptosis. Expression levels of mTOR and its downstream Apaf-1 were increased during subsequent culturing after SMG. miR-22 was up-regulated and its target genes SRF and LAMC1 were down-regulated at mRNA levels. LAMC1 siRNAs reduced cell adhesion rate and inhibited stress fiber formation while SRF siRNAs caused apoptosis. Conclusion: SMG has the subsequent biological effects on HUVECs, resulting in growth inhibition through mTOR signaling and miR-22-mediated mechanism.展开更多
Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can res...Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components.展开更多
Large solidification ranges and coarse columnar grains in the additively manufacturing of Al-Mg-Si alloys are normally involved in hot cracks during solidification.In this work,we develop novel crack-free Al-Mg_(2) Si...Large solidification ranges and coarse columnar grains in the additively manufacturing of Al-Mg-Si alloys are normally involved in hot cracks during solidification.In this work,we develop novel crack-free Al-Mg_(2) Si alloys fabricated by laser powder-bed fusion(L-PBF).The results indicate that the eutectic Mg_(2) Si phase possesses a strong ability to reduce crack susceptibility.It can enhance the grain growth restriction factor in the initial stage of solidification and promote eutectic filling in the terminal stage of solidifica-tion.The crack-free L-PBFed Al-x Mg_(2) Si alloys(x=6 wt.%,9 wt.%,and 12 wt.%)exhibit the combination of low crack susceptibility index(CSI),superior ability for liquid filling,and grain refinement.Particularly,the L-PBFed Al-9Mg_(2) Si alloy shows improved mechanical properties(e.g.yield strength of 397 MPa and elongation of 7.3%).However,the cracks are more likely to occur in the region near the columnar grain boundaries of the L-PBFed Al-3Mg_(2) Si alloy with a large solidification range and low eutectic content for liquid filling.Correspondingly,the L-PBFed Al-3Mg_(2) Si alloy shows poor bearing capacity of mechanical properties.The precise tuning of Mg_(2) Si eutectic content can offer an innovative strategy for eliminating cracks in additively manufactured Al-Mg-Si alloy.展开更多
Cyber-physical systems(CPSs)are regarded as the backbone of the fourth industrial revolution,in which communication,physical processes,and computer technology are integrated.In modern industrial systems,CPSs are widel...Cyber-physical systems(CPSs)are regarded as the backbone of the fourth industrial revolution,in which communication,physical processes,and computer technology are integrated.In modern industrial systems,CPSs are widely utilized across various domains,such as smart grids,smart healthcare systems,smart vehicles,and smart manufacturing,among others.Due to their unique spatial distribution,CPSs are highly vulnerable to cyber-attacks,which may result in severe performance degradation and even system instability.Consequently,the security concerns of CPSs have attracted significant attention in recent years.In this paper,a comprehensive survey on the security issues of CPSs under cyber-attacks is provided.Firstly,mathematical descriptions of various types of cyberattacks are introduced in detail.Secondly,two types of secure estimation and control processing schemes,including robust methods and active methods,are reviewed.Thirdly,research findings related to secure control and estimation problems for different types of CPSs are summarized.Finally,the survey is concluded by outlining the challenges and suggesting potential research directions for the future.展开更多
AIM:To measure the optimal anterior chamber pressure(ACP)for safe phacoemulsification using a new tube chamber system with internal pressure measurement function in the porcine eye.METHODS:The 20-gauge and 21-gauge st...AIM:To measure the optimal anterior chamber pressure(ACP)for safe phacoemulsification using a new tube chamber system with internal pressure measurement function in the porcine eye.METHODS:The 20-gauge and 21-gauge straight tips with yellow and orange sleeves,respectively,were covered by a test chamber combined with a pressure sensor for measuring ACP.This was measured for 20s from 10s after starting aspiration in the linear mode using vacuum levels of 200 and 150 mm Hg with a 20-gauge tip,and 300 and 250 mm Hg with a 21-gauge tip.Using a porcine eye,a pressure sensor fixed with a 0.9 mm corneal incision measured ACP.For the posterior capsule contact assay,porcine eyes were treated as described above,and the ultrasonic needle tip was held at the height of the iris and aspirated for 30s in linear mode at a vacuum of 200 and 150 mm Hg for the 20-gauge tip,and 300 and 250 mm Hg for the 21-gauge tip.The bottle height at which the posterior capsule accidentally contacted the ultrasonic tip was recorded,and the estimated ACP was calculated.RESULTS:The internal pressure of the new tube chamber system and ACP from the porcine eye closely matched proportional changes at vacuum levels of 200 and 150 mm Hg with 20-gauge tips.Similarly,proportional changes at vacuum levels of 300 and 250 mm Hg with the 21-gauge tip were nearly equal.The bottle height at which the posterior capsule contacted with the tip and estimated ACP were 57.5±12.6 cm(20.2±7.9 mm Hg)at 200 mm Hg with a 20-gauge tip,35.0±10.0 cm(16.6±6.3 mm Hg)at 150 mm Hg with a 20-gauge tip,47.5±12.6 cm(18.7±8.7 mm Hg)at 300 mm Hg with a 21-gauge tip,and 32.5±5.0 cm(15.7±3.5 mm Hg)at 250 mm Hg with a 21-gauge tip.CONCLUSION:A comprehensive understanding of this chamber system’s characteristics and usage can resolve anterior chamber instability caused by changing preoperative settings on the phaco machine.展开更多
The article presents the results of in-kind measurements and numerical modeling of the formation of water characteristics in the Kama River,which is used for technical water supply in the production of potash fertiliz...The article presents the results of in-kind measurements and numerical modeling of the formation of water characteristics in the Kama River,which is used for technical water supply in the production of potash fertilizers.In the warm season,risks arise that threaten the sustainability of the water supply.It was found that in the summer,when the studied section of the Kama River is backed up by the KamaHydroelectric Power Station,there is a significant decrease in flow rates,which leads to vertical stratification of water properties.This,in turn,significantly limits the possibilities of using water fromthe bottom zone.Under conditions of significant water discharge from the reservoir,this section has river conditions with significantly higher flow rates.Under such conditions,intense vertical mixing of water masses occurs,which improves the consumer properties of water necessary for sustainable water supply.The results of numerical modeling carried out within the framework of the three-dimensional approach confirmed this conclusion.It is shown that with an increase in the flow rate in the channel near thewater intake,the concentration of salts decreases,which is an important factor in ensuring high-quality water supply.展开更多
Thework presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds.Our first-principles computations of the electronic structures were based on density f...Thework presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds.Our first-principles computations of the electronic structures were based on density functional theory accounting for spin-orbit coupling.These compounds are computed to be semiconductors.The calculated gap values make ScNiBi and YNiBi valid for thermoelectric and optoelectronic applications and as selective filters.In ScNiBi and YNiBi,an intense peak at the energy of−2 eV is composed of theNi 3d states in the conduction band,and the valence band mostly contains these states with some contributions from the Bi 6p and Sc 3d or Y 4d electronic states.These states participate in the formation of the indirect gap of 0.16 eV(ScNiBi)and 0.18 eV(YNiBi).Within the spectral ellipsometry technique in the interval 0.22–15μm of wavelength,the optical functions of materials are studied,and their dispersion features are revealed.A good matching of the experimental and modeled optical conductivity spectra allowed us to analyze orbital contributions.The abnormally low optical absorption observed in the low-energy region of the spectrum is referred to as the results of band calculations indicating a small density of electronic states near the Fermi energy of these complex materials.展开更多
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti...Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.展开更多
This study evaluates the accuracy of large-eddy simulation(LES)analyses using a commonly used subgrid-scale(SGS)model based on the eddy viscosity hypothesis.The evaluation is performed by examining the Reynolds number...This study evaluates the accuracy of large-eddy simulation(LES)analyses using a commonly used subgrid-scale(SGS)model based on the eddy viscosity hypothesis.The evaluation is performed by examining the Reynolds number dependence of turbulence maintained by anisotropic and isotropic forcing techniques derived from Tay-lor analytical solutions.The Smagorinsky model,the Vreman model,and the coherent structure model are used as SGS models.LES outcomes were evaluated against those produced by direct numerical simulation(DNS).In contrast to the results with isotropic forcing,the turbulent kinetic energy of anisotropic forcing-induced tur-bulence,as calculated by DNS,exhibits a minimum in the intermediate Reynolds number range.However,all three LES analyses fail to reproduce this minimum and instead show overestimated values.This discrepancy is attributed to reduced spatial inhomogeneity of the turbulent diffusion,pressure diffusion,and pressure-strain correlation terms in the transport equations of the velocity fluctuation intensities in this Reynolds number range.Visualization results for the LES and DNS analyses further show that within this range,LES analyses reproduce two-dimensional tubular flow structures that are not observed in DNS results.展开更多
In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utili...In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.展开更多
The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)netw...The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)networks.However,the transmission of STAR-RIS enhanced NOMA networks performance is severely limited due to the inter-user interference(IUI)on multi-user detections.To mitigate this drawback,we propose a generalized quadrature spatial modulation(GQSM)aided STAR-RIS in conjunction with the NOMA scheme,termed STARRIS-NOMA-GQSM,to improve the performance of the corresponding NGMA network.By STAR-RISNOMA-GQSM,the information bits for all users in transmission and reflection zones are transmitted via orthogonal signal domains to eliminate the IUI so as to greatly improve the system performance.The lowcomplexity detection and upper-bounded bit error rate(BER)of STAR-RIS-NOMA-GQSM are both studied to evaluate its feasibility and performance.Moreover,by further utilizing index modulation(IM),we propose an enhanced STAR-RIS-NOMA-GQSM scheme,termed E-STAR-RIS-NOMA-GQSM,to enhance the transmission rate by dynamically adjusting reflection patterns in both transmission and reflection zones.Simulation results show that the proposed original and enhanced scheme significantly outperform the conventional STAR-RIS-NOMA and also confirm the precision of the theoretical analysis of the upper-bounded BER.展开更多
For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and ...For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and on reactive(Ni)electrodes.On the inert Mo electrode,the reduction of Er(Ⅲ)to Er(0)is a onestep with three-electron and quasi-reversible reaction process.Meanwhile,the apparent generation Gibbs free energy and activity coefficients of Er(Ⅲ)on the inert electrode were determined.Thereafter,the electrochemical reduction of Er(Ⅲ)on the Ni electrode was emphatically investigated.Er(Ⅲ)is reduced at a corrected potential owing to the formation of Ni-Er alloys.In addition,thermodynamic parameters such as partial excess Gibbs free energy change of Er in Ni,activity and apparent generation Gibbs free energy of the Ni-Er alloys were determined by the electromotive force method.Finally,different Ni-Er alloys were produced using potentiostatic electrolysis on the Ni cathode by controlling different potentials,Moreover,electrolytic extraction was carried out on the Ni cathode at the potential of-2.0 V,and the separation efficiency of Er reaches 99.72%,which proves the practicability of separating Er from LiCl-KCl eutectic on the reactive Ni cathode.展开更多
One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effect...One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effective alternative to significantly reduce these emissions.In this study,rapeseed methyl ester(RME)was used as a diesel engine fuel and the emitted particulate matter was comparedwith ultra-lowsulfur diesel(ULSD).Inmost experimental studies,the emission of soot wasmeasured.In this work,the effects of injection timing,injection pressure(IP),and engine load on fine particulate matter in both nucleation and accumulation modes were studied.The results show that IP increases the number of particles in the accumulation mode while the number of particles in the crystallization mode is higher for rapeseed methyl ester(RME)than for ultra-low sulfur diesel(ULSD).Conversely,the formation rates of particles in the accumulationmode are higher for ULSD.Cumulative concentration numbers(CCN)are generally higher for RME in crystallization mode but higher for ULSD in accumulation mode.Increasing the IP reduces the CCN values.The particle size in crystallizationmode reaches a maximum of 22 nm at IPs of 800 and 1000 bar but decreases to 15 nm at 1200 bar.Most fine particles fall in the 5–100 nm diameter range.High engine loads reduce the particle size distribution in nucleationmode for both fuels,with a slight increase in particle size in nucleationmode.Thestudy concluded that the use of rapeseed methyl ester as an engine fuel benefits the environment and improves air quality due to the significant reduction in the size,number,and concentration of nano-soot particles and total particles emitted from the engine.展开更多
Introduction Gender and sex are related to important quality and safety issues in scientific,health,and clinical research.Sex refers to biological characteristics,while gender encompasses the sociocultural norms,ident...Introduction Gender and sex are related to important quality and safety issues in scientific,health,and clinical research.Sex refers to biological characteristics,while gender encompasses the sociocultural norms,identities,and relationships that shape communities and organizations,as well as influence actions,behaviors,contexts,and knowledge.Both gender and sex intersect with other social categories.In this context,in addition to sex or gender,the intersectionality refers to overlapping or interdependent systems of discrimination by more than one factor,such as age,disability,ethnicity,geographic location,socioeconomic status,and sexuality,among others.展开更多
Tunnels are a crucial component of urban infrastructure,continuously exposed to various hazards,threats,and stressors.Events such as earthquakes,fires,and floods,along with aging and construction-related disturbances,...Tunnels are a crucial component of urban infrastructure,continuously exposed to various hazards,threats,and stressors.Events such as earthquakes,fires,and floods,along with aging and construction-related disturbances,pose significant challenges to tunnel resilience.Reliable fragility,restoration,and traffic reinstatement models are essential for assessing and quantifying resilience,as they allow infrastructure operators to prioritize maintenance and adapt to evolving threats in complex transportation systems.Although the vulnerability and fragility of tunnels have been widely researched over the last decade,studies focusing on tunnel restoration to quantify resilience remain scarce.This gap prevents operators from implementing proactive and reactive adaptation measures to ensure seamless tunnel functionality.To address this issue,this study presents a novel,fit-for-purpose,damage-level-dependent probabilistic approach for quantifying tunnel recovery.It introduces the first realistic,practice-led restoration models that enable resilience quantification in tunnels.To develop these models,a global expert survey was conducted to establish reinstatement(traffic capacity)and restoration(structural capacity)models tailored to tunnel resilience assessments.A detailed questionnaire was designed to gather expert input on required restoration tasks,their duration,sequencing,and cost.The survey focused primarily on damage induced by seismic events,incorporating idle times and traffic capacity gains over time.The results were then used to generate deterministic and probabilistic reinstatement and restoration models.The deterministic models are intended for practical applications,while the probabilistic models account for epistemic uncertainties and are presented in a reproducible format for further development across different hazards and applications.A case study is included to demonstrate the resilience assessment of a typical tunnel using the newly developed restoration models.The findings will help infrastructure operators and city planners to accurately assess tunnel resilience,enabling informed investment decisions.展开更多
基金This study was supported by the "National Natural Science Foundation of China (No, 31270903)" and the Fundamental Research Funds for the Central Universities (3132016330),
文摘Purpose: Microgravity is known to cause endothelium dysfunction in astronauts returning from spaceflight. We aimed to reveal the regulatory mechanism in alterations of human endothelial cells after simulated microgravity (SMG). Methods: We utilized the rotary cell culture system (RCCS-1) to explore the subsequent effects of SMG on human umbilical vein endothelial cells (HUVECs). Results: SMG-treated HUVECs appeared obvious growth inhibition after return to normal gravity, which might be attributed to a set of responses including alteration of cytoskeleton, decreased cell adhesion capacity and increased apoptosis. Expression levels of mTOR and its downstream Apaf-1 were increased during subsequent culturing after SMG. miR-22 was up-regulated and its target genes SRF and LAMC1 were down-regulated at mRNA levels. LAMC1 siRNAs reduced cell adhesion rate and inhibited stress fiber formation while SRF siRNAs caused apoptosis. Conclusion: SMG has the subsequent biological effects on HUVECs, resulting in growth inhibition through mTOR signaling and miR-22-mediated mechanism.
基金supported by the National Natural Science Foundation of China(No.51871155).
文摘Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components.
基金financially supported by the National Natural Science Foundation of China(Grant No.52071343)the Leading Innovation and Entrepreneurship Team of Zhejiang Province-Automotive Light Alloy Innovation Team(No.2022R01018).
文摘Large solidification ranges and coarse columnar grains in the additively manufacturing of Al-Mg-Si alloys are normally involved in hot cracks during solidification.In this work,we develop novel crack-free Al-Mg_(2) Si alloys fabricated by laser powder-bed fusion(L-PBF).The results indicate that the eutectic Mg_(2) Si phase possesses a strong ability to reduce crack susceptibility.It can enhance the grain growth restriction factor in the initial stage of solidification and promote eutectic filling in the terminal stage of solidifica-tion.The crack-free L-PBFed Al-x Mg_(2) Si alloys(x=6 wt.%,9 wt.%,and 12 wt.%)exhibit the combination of low crack susceptibility index(CSI),superior ability for liquid filling,and grain refinement.Particularly,the L-PBFed Al-9Mg_(2) Si alloy shows improved mechanical properties(e.g.yield strength of 397 MPa and elongation of 7.3%).However,the cracks are more likely to occur in the region near the columnar grain boundaries of the L-PBFed Al-3Mg_(2) Si alloy with a large solidification range and low eutectic content for liquid filling.Correspondingly,the L-PBFed Al-3Mg_(2) Si alloy shows poor bearing capacity of mechanical properties.The precise tuning of Mg_(2) Si eutectic content can offer an innovative strategy for eliminating cracks in additively manufactured Al-Mg-Si alloy.
文摘Cyber-physical systems(CPSs)are regarded as the backbone of the fourth industrial revolution,in which communication,physical processes,and computer technology are integrated.In modern industrial systems,CPSs are widely utilized across various domains,such as smart grids,smart healthcare systems,smart vehicles,and smart manufacturing,among others.Due to their unique spatial distribution,CPSs are highly vulnerable to cyber-attacks,which may result in severe performance degradation and even system instability.Consequently,the security concerns of CPSs have attracted significant attention in recent years.In this paper,a comprehensive survey on the security issues of CPSs under cyber-attacks is provided.Firstly,mathematical descriptions of various types of cyberattacks are introduced in detail.Secondly,two types of secure estimation and control processing schemes,including robust methods and active methods,are reviewed.Thirdly,research findings related to secure control and estimation problems for different types of CPSs are summarized.Finally,the survey is concluded by outlining the challenges and suggesting potential research directions for the future.
文摘AIM:To measure the optimal anterior chamber pressure(ACP)for safe phacoemulsification using a new tube chamber system with internal pressure measurement function in the porcine eye.METHODS:The 20-gauge and 21-gauge straight tips with yellow and orange sleeves,respectively,were covered by a test chamber combined with a pressure sensor for measuring ACP.This was measured for 20s from 10s after starting aspiration in the linear mode using vacuum levels of 200 and 150 mm Hg with a 20-gauge tip,and 300 and 250 mm Hg with a 21-gauge tip.Using a porcine eye,a pressure sensor fixed with a 0.9 mm corneal incision measured ACP.For the posterior capsule contact assay,porcine eyes were treated as described above,and the ultrasonic needle tip was held at the height of the iris and aspirated for 30s in linear mode at a vacuum of 200 and 150 mm Hg for the 20-gauge tip,and 300 and 250 mm Hg for the 21-gauge tip.The bottle height at which the posterior capsule accidentally contacted the ultrasonic tip was recorded,and the estimated ACP was calculated.RESULTS:The internal pressure of the new tube chamber system and ACP from the porcine eye closely matched proportional changes at vacuum levels of 200 and 150 mm Hg with 20-gauge tips.Similarly,proportional changes at vacuum levels of 300 and 250 mm Hg with the 21-gauge tip were nearly equal.The bottle height at which the posterior capsule contacted with the tip and estimated ACP were 57.5±12.6 cm(20.2±7.9 mm Hg)at 200 mm Hg with a 20-gauge tip,35.0±10.0 cm(16.6±6.3 mm Hg)at 150 mm Hg with a 20-gauge tip,47.5±12.6 cm(18.7±8.7 mm Hg)at 300 mm Hg with a 21-gauge tip,and 32.5±5.0 cm(15.7±3.5 mm Hg)at 250 mm Hg with a 21-gauge tip.CONCLUSION:A comprehensive understanding of this chamber system’s characteristics and usage can resolve anterior chamber instability caused by changing preoperative settings on the phaco machine.
基金the Government of the Perm Territory within the Framework of Scientific Project No.S-26/828the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘The article presents the results of in-kind measurements and numerical modeling of the formation of water characteristics in the Kama River,which is used for technical water supply in the production of potash fertilizers.In the warm season,risks arise that threaten the sustainability of the water supply.It was found that in the summer,when the studied section of the Kama River is backed up by the KamaHydroelectric Power Station,there is a significant decrease in flow rates,which leads to vertical stratification of water properties.This,in turn,significantly limits the possibilities of using water fromthe bottom zone.Under conditions of significant water discharge from the reservoir,this section has river conditions with significantly higher flow rates.Under such conditions,intense vertical mixing of water masses occurs,which improves the consumer properties of water necessary for sustainable water supply.The results of numerical modeling carried out within the framework of the three-dimensional approach confirmed this conclusion.It is shown that with an increase in the flow rate in the channel near thewater intake,the concentration of salts decreases,which is an important factor in ensuring high-quality water supply.
文摘Thework presents the electronic structure computations and optical spectroscopy studies of half-Heusler ScNiBi and YNiBi compounds.Our first-principles computations of the electronic structures were based on density functional theory accounting for spin-orbit coupling.These compounds are computed to be semiconductors.The calculated gap values make ScNiBi and YNiBi valid for thermoelectric and optoelectronic applications and as selective filters.In ScNiBi and YNiBi,an intense peak at the energy of−2 eV is composed of theNi 3d states in the conduction band,and the valence band mostly contains these states with some contributions from the Bi 6p and Sc 3d or Y 4d electronic states.These states participate in the formation of the indirect gap of 0.16 eV(ScNiBi)and 0.18 eV(YNiBi).Within the spectral ellipsometry technique in the interval 0.22–15μm of wavelength,the optical functions of materials are studied,and their dispersion features are revealed.A good matching of the experimental and modeled optical conductivity spectra allowed us to analyze orbital contributions.The abnormally low optical absorption observed in the low-energy region of the spectrum is referred to as the results of band calculations indicating a small density of electronic states near the Fermi energy of these complex materials.
基金The Australian Research Council(DP200101197,DP230101107).
文摘Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.
基金supported by the Japanese Ministry of Education,Culture,Sports,Science and Technol-ogy through Grants-in-Aid(Grant Nos.21K03859 and 22H01684)the Kurita Water and Environment Foundation(Grant No.25B042)the Okayama Foundation for Science and Technology(2025).
文摘This study evaluates the accuracy of large-eddy simulation(LES)analyses using a commonly used subgrid-scale(SGS)model based on the eddy viscosity hypothesis.The evaluation is performed by examining the Reynolds number dependence of turbulence maintained by anisotropic and isotropic forcing techniques derived from Tay-lor analytical solutions.The Smagorinsky model,the Vreman model,and the coherent structure model are used as SGS models.LES outcomes were evaluated against those produced by direct numerical simulation(DNS).In contrast to the results with isotropic forcing,the turbulent kinetic energy of anisotropic forcing-induced tur-bulence,as calculated by DNS,exhibits a minimum in the intermediate Reynolds number range.However,all three LES analyses fail to reproduce this minimum and instead show overestimated values.This discrepancy is attributed to reduced spatial inhomogeneity of the turbulent diffusion,pressure diffusion,and pressure-strain correlation terms in the transport equations of the velocity fluctuation intensities in this Reynolds number range.Visualization results for the LES and DNS analyses further show that within this range,LES analyses reproduce two-dimensional tubular flow structures that are not observed in DNS results.
基金supported in part by the National Natural Science Foundation of China(12171124,61933007)the Natural Science Foundation of Heilongjiang Province of China(ZD2022F003)+2 种基金the National High-End Foreign Experts Recruitment Plan of China(G2023012004L)the Royal Society of UKthe Alexander von Humboldt Foundation of Germany
文摘In this paper, the problem of cubature Kalman fusion filtering(CKFF) is addressed for multi-sensor systems under amplify-and-forward(AaF) relays. For the purpose of facilitating data transmission, AaF relays are utilized to regulate signal communication between sensors and filters. Here, the randomly varying channel parameters are represented by a set of stochastic variables whose occurring probabilities are permitted to exhibit bounded uncertainty. Employing the spherical-radial cubature principle, a local filter under AaF relays is initially constructed. This construction ensures and minimizes an upper bound of the filtering error covariance by designing an appropriate filter gain. Subsequently, the local filters are fused through the application of the covariance intersection fusion rule. Furthermore, the uniform boundedness of the filtering error covariance's upper bound is investigated through establishing certain sufficient conditions. The effectiveness of the proposed CKFF scheme is ultimately validated via a simulation experiment concentrating on a three-phase induction machine.
基金supported in part by Guangdong Basic and Applied Basic Research Foundation under Grants 2023A1515030118 and 2024A1515010012in part by the Guangzhou Science and Technology Project under Grant 2023A03J0110+3 种基金in part by Guangzhou Basic Research Program Municipal School(College)Joint Funding Project under Grant 2025A03J3119in part by National Natural Science Foundation of China under Grant 62173101in part by the Key Discipline Project of Guangzhou Education Bureau under Grant 202255467in part by the Key Laboratory of on-Chip Communication and Sensor Chip of Guangdong Higher Education Institutes under Grant 2023KSYS002。
文摘The simultaneously transmitting and reflecting reconfigurable intelligent surface(STAR-RIS)is regarded as a promising paradigm for enhancing the connectivity and reliability of non-orthogonal multiple access(NOMA)networks.However,the transmission of STAR-RIS enhanced NOMA networks performance is severely limited due to the inter-user interference(IUI)on multi-user detections.To mitigate this drawback,we propose a generalized quadrature spatial modulation(GQSM)aided STAR-RIS in conjunction with the NOMA scheme,termed STARRIS-NOMA-GQSM,to improve the performance of the corresponding NGMA network.By STAR-RISNOMA-GQSM,the information bits for all users in transmission and reflection zones are transmitted via orthogonal signal domains to eliminate the IUI so as to greatly improve the system performance.The lowcomplexity detection and upper-bounded bit error rate(BER)of STAR-RIS-NOMA-GQSM are both studied to evaluate its feasibility and performance.Moreover,by further utilizing index modulation(IM),we propose an enhanced STAR-RIS-NOMA-GQSM scheme,termed E-STAR-RIS-NOMA-GQSM,to enhance the transmission rate by dynamically adjusting reflection patterns in both transmission and reflection zones.Simulation results show that the proposed original and enhanced scheme significantly outperform the conventional STAR-RIS-NOMA and also confirm the precision of the theoretical analysis of the upper-bounded BER.
基金Project supported by Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072023GIP1005)。
文摘For the efficient electrolytic extraction of Er from spent nuclear fuel,a series of electrochemical methods was used to research the electrochemical behavior of Er(Ⅲ)in the LiCl—KCl system on inert(Mo)electrode and on reactive(Ni)electrodes.On the inert Mo electrode,the reduction of Er(Ⅲ)to Er(0)is a onestep with three-electron and quasi-reversible reaction process.Meanwhile,the apparent generation Gibbs free energy and activity coefficients of Er(Ⅲ)on the inert electrode were determined.Thereafter,the electrochemical reduction of Er(Ⅲ)on the Ni electrode was emphatically investigated.Er(Ⅲ)is reduced at a corrected potential owing to the formation of Ni-Er alloys.In addition,thermodynamic parameters such as partial excess Gibbs free energy change of Er in Ni,activity and apparent generation Gibbs free energy of the Ni-Er alloys were determined by the electromotive force method.Finally,different Ni-Er alloys were produced using potentiostatic electrolysis on the Ni cathode by controlling different potentials,Moreover,electrolytic extraction was carried out on the Ni cathode at the potential of-2.0 V,and the separation efficiency of Er reaches 99.72%,which proves the practicability of separating Er from LiCl-KCl eutectic on the reactive Ni cathode.
文摘One of the most important of these emissions is fine particulate matter,which is a harmful emission of diesel engines,leading to the imposition of strict regulations.Biodiesel,with its high oxygen content,is an effective alternative to significantly reduce these emissions.In this study,rapeseed methyl ester(RME)was used as a diesel engine fuel and the emitted particulate matter was comparedwith ultra-lowsulfur diesel(ULSD).Inmost experimental studies,the emission of soot wasmeasured.In this work,the effects of injection timing,injection pressure(IP),and engine load on fine particulate matter in both nucleation and accumulation modes were studied.The results show that IP increases the number of particles in the accumulation mode while the number of particles in the crystallization mode is higher for rapeseed methyl ester(RME)than for ultra-low sulfur diesel(ULSD).Conversely,the formation rates of particles in the accumulationmode are higher for ULSD.Cumulative concentration numbers(CCN)are generally higher for RME in crystallization mode but higher for ULSD in accumulation mode.Increasing the IP reduces the CCN values.The particle size in crystallizationmode reaches a maximum of 22 nm at IPs of 800 and 1000 bar but decreases to 15 nm at 1200 bar.Most fine particles fall in the 5–100 nm diameter range.High engine loads reduce the particle size distribution in nucleationmode for both fuels,with a slight increase in particle size in nucleationmode.Thestudy concluded that the use of rapeseed methyl ester as an engine fuel benefits the environment and improves air quality due to the significant reduction in the size,number,and concentration of nano-soot particles and total particles emitted from the engine.
基金funded by the European Union's Horizon 2020 Research and Innovation Programme under grant No.896932(TTV guide TX project)and grant No.824087(EOSC-Life)。
文摘Introduction Gender and sex are related to important quality and safety issues in scientific,health,and clinical research.Sex refers to biological characteristics,while gender encompasses the sociocultural norms,identities,and relationships that shape communities and organizations,as well as influence actions,behaviors,contexts,and knowledge.Both gender and sex intersect with other social categories.In this context,in addition to sex or gender,the intersectionality refers to overlapping or interdependent systems of discrimination by more than one factor,such as age,disability,ethnicity,geographic location,socioeconomic status,and sexuality,among others.
基金support from the National Natural Science Foundation of China(52478410,W2411044,and 52408435)the National Key Research and Development Program of China(2022YFC3800905)+3 种基金Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Fundamental Research Funds for the Central UniversitiesDr.Stergios-Aristoteles Mitoulis and Dr.Sotirios Argyroudis acknowledge funding from the UK Research and Innovation(UKRI)under the UK government’s Horizon Europe funding guarantee(EP/Y003586/1,EP/X037665/1)This is the funding guarantee for the European Union's HORIZON-MSCA-2021-SE-01(101086413)“ReCharged-Climate-Aware Resilience for Sustainable Critical and Interdependent Infrastructure Systems Enhanced by Emerging Digital Technologies.”。
文摘Tunnels are a crucial component of urban infrastructure,continuously exposed to various hazards,threats,and stressors.Events such as earthquakes,fires,and floods,along with aging and construction-related disturbances,pose significant challenges to tunnel resilience.Reliable fragility,restoration,and traffic reinstatement models are essential for assessing and quantifying resilience,as they allow infrastructure operators to prioritize maintenance and adapt to evolving threats in complex transportation systems.Although the vulnerability and fragility of tunnels have been widely researched over the last decade,studies focusing on tunnel restoration to quantify resilience remain scarce.This gap prevents operators from implementing proactive and reactive adaptation measures to ensure seamless tunnel functionality.To address this issue,this study presents a novel,fit-for-purpose,damage-level-dependent probabilistic approach for quantifying tunnel recovery.It introduces the first realistic,practice-led restoration models that enable resilience quantification in tunnels.To develop these models,a global expert survey was conducted to establish reinstatement(traffic capacity)and restoration(structural capacity)models tailored to tunnel resilience assessments.A detailed questionnaire was designed to gather expert input on required restoration tasks,their duration,sequencing,and cost.The survey focused primarily on damage induced by seismic events,incorporating idle times and traffic capacity gains over time.The results were then used to generate deterministic and probabilistic reinstatement and restoration models.The deterministic models are intended for practical applications,while the probabilistic models account for epistemic uncertainties and are presented in a reproducible format for further development across different hazards and applications.A case study is included to demonstrate the resilience assessment of a typical tunnel using the newly developed restoration models.The findings will help infrastructure operators and city planners to accurately assess tunnel resilience,enabling informed investment decisions.