Co-based catalysts are promising alternatives to precious metals for the selective and effective oxidation of 5-hydroxymethylfurfural(HMF)to the higher value-added 2,5-furandicarboxylic acid(FDCA).However,these cataly...Co-based catalysts are promising alternatives to precious metals for the selective and effective oxidation of 5-hydroxymethylfurfural(HMF)to the higher value-added 2,5-furandicarboxylic acid(FDCA).However,these catalysts still suffer from unsatisfactory activity and poor selectivity.A series of N-doped carbon-supported Co-based dual-metal nanoparticles(NPs)have been designed,among which the Co-Cu_(1.4)-CN_(x) exhibits enhanced HMF oxidative activity,achieving FDCA formation rates 4 times higher than that of pristine Co-CN_(x),with 100%FDCA selectivity.Density functional theory(DFT)calculations evidenced that the increased electron density on Co sites induced by Cu can mediate the positive electronegativity offset to downshift the dband center of Co-Cu_(1.4)-CN_(x),thus reducing the energy barriers for the conversion of HMF to FDCA.Such findings will support the development of superior non-precious metal catalysts for HMF oxidation.展开更多
Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices,leading to significant mortality in clinic.To address this issue,here,we report a biomim...Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices,leading to significant mortality in clinic.To address this issue,here,we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide,with bio-orthogonal click chemistry,to tailor the surface functionalities of tubing and catheters.Inspired by mussel adhesive foot protein,a bioclickable peptide mimic(DOPA)4-azidebased structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry.Then,the dibenzylcyclooctyne(DBCO)modified nitric oxide generating species of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(DOTA)chelated copper ions and the DBCO-modified antimicrobial peptide(DBCO-AMP)are clicked onto the grafted surfaces via bio-orthogonal reaction.The combination of the robustly grafted AMP and Cu-DOTA endows the modified tubing with durable antimicrobial properties and ability in long-term catalytically generating NO from endogenous snitrosothiols to resist adhesion/activation of platelets,thus preventing the formation of thrombosis.Overall,this biomimetic surface engineering technology provides a promising solution for multicomponent surface functionalization and the surface bioengineering of biomedical devices with enhanced clinical performance.展开更多
In clinical practice,we noticed that triple negative breast cancer(TNBC)patients had higher shear-wave elasticity(SWE)stiffness than non-TNBC patients and a higherα-SMA expression was found in TNBC tissues than the n...In clinical practice,we noticed that triple negative breast cancer(TNBC)patients had higher shear-wave elasticity(SWE)stiffness than non-TNBC patients and a higherα-SMA expression was found in TNBC tissues than the non-TNBC tissues.Moreover,SWE stiffness also shows a clear correlation to neoadjuvant response efficiency.To elaborate this phenomenon,TNBC cell membrane-modified polylactide acid-glycolic acid(PLGA)nanoparticle was fabricated to specifically deliver artesunate to regulate SWE stiffness through inhibiting CAFs functional status.As tested in MDA-MB-231 and E0771 orthotopic tumor models,CAFs functional status inhibited by 231M-ARS@PLGA nanoparticles(231M-AP NPs)had reduced the SWE stiffness as well as attenuated hypoxia of tumor as tumor soil loosening agent which amplified the antitumor effects of paclitaxel and PD1 inhibitor.Single-cell sequencing indicated that the two main CAFs(extracellular matrix and wound healing CAFs)that produces extracellular matrix could influence the tumor SWE stiffness as well as the antitumor effect of drugs.Further,biomimetic nanoparticles inhibited CAFs function could attenuate tumor hypoxia by increasing proportion of inflammatory blood vessels and oxygen transport capacity.Therefore,our finding is fundamental for understanding the role of CAFs on affecting SWE stiffness and drugs antitumor effects,which can be further implied in the potential clinical theranostic predicting in neoadjuvant therapy efficacy through non-invasive analyzing of SWE imaging.展开更多
基金the National Natural Science Foundation of China(Nos.51902281,51801075,and 82160421)the Natural Science Foundation of Jiangsu Province(No.BK20211322)the Scientific and Technological Projects of Henan Province(No.212102210293).
文摘Co-based catalysts are promising alternatives to precious metals for the selective and effective oxidation of 5-hydroxymethylfurfural(HMF)to the higher value-added 2,5-furandicarboxylic acid(FDCA).However,these catalysts still suffer from unsatisfactory activity and poor selectivity.A series of N-doped carbon-supported Co-based dual-metal nanoparticles(NPs)have been designed,among which the Co-Cu_(1.4)-CN_(x) exhibits enhanced HMF oxidative activity,achieving FDCA formation rates 4 times higher than that of pristine Co-CN_(x),with 100%FDCA selectivity.Density functional theory(DFT)calculations evidenced that the increased electron density on Co sites induced by Cu can mediate the positive electronegativity offset to downshift the dband center of Co-Cu_(1.4)-CN_(x),thus reducing the energy barriers for the conversion of HMF to FDCA.Such findings will support the development of superior non-precious metal catalysts for HMF oxidation.
基金the National Natural Science Foundation of China(Project 82072072)(Z.Y)International Cooperation Project by Science and Technology Department of Sichuan Province(2021YFH0056 and 2019YFH0103)(Z.Y)the Fundamental Research Funds for the Central Universities(2682020ZT82 and 2682020ZT76)(Z.Y).
文摘Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices,leading to significant mortality in clinic.To address this issue,here,we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide,with bio-orthogonal click chemistry,to tailor the surface functionalities of tubing and catheters.Inspired by mussel adhesive foot protein,a bioclickable peptide mimic(DOPA)4-azidebased structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry.Then,the dibenzylcyclooctyne(DBCO)modified nitric oxide generating species of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid(DOTA)chelated copper ions and the DBCO-modified antimicrobial peptide(DBCO-AMP)are clicked onto the grafted surfaces via bio-orthogonal reaction.The combination of the robustly grafted AMP and Cu-DOTA endows the modified tubing with durable antimicrobial properties and ability in long-term catalytically generating NO from endogenous snitrosothiols to resist adhesion/activation of platelets,thus preventing the formation of thrombosis.Overall,this biomimetic surface engineering technology provides a promising solution for multicomponent surface functionalization and the surface bioengineering of biomedical devices with enhanced clinical performance.
基金National Natural Science Foundation of China(NO.81830058,82071945,81401422,81871472)Shanghai Committee of Science and Technology,China(No.21S31905400)+2 种基金Research Fellow(Grant No.328933),project(347897)Solutions for Health Profile(336355)InFLAMES Flagship(337531)projects from Academy of Finland,Finland China Food and Health International Pilot Project funded by the Finnish Ministry of Education and Culture.
文摘In clinical practice,we noticed that triple negative breast cancer(TNBC)patients had higher shear-wave elasticity(SWE)stiffness than non-TNBC patients and a higherα-SMA expression was found in TNBC tissues than the non-TNBC tissues.Moreover,SWE stiffness also shows a clear correlation to neoadjuvant response efficiency.To elaborate this phenomenon,TNBC cell membrane-modified polylactide acid-glycolic acid(PLGA)nanoparticle was fabricated to specifically deliver artesunate to regulate SWE stiffness through inhibiting CAFs functional status.As tested in MDA-MB-231 and E0771 orthotopic tumor models,CAFs functional status inhibited by 231M-ARS@PLGA nanoparticles(231M-AP NPs)had reduced the SWE stiffness as well as attenuated hypoxia of tumor as tumor soil loosening agent which amplified the antitumor effects of paclitaxel and PD1 inhibitor.Single-cell sequencing indicated that the two main CAFs(extracellular matrix and wound healing CAFs)that produces extracellular matrix could influence the tumor SWE stiffness as well as the antitumor effect of drugs.Further,biomimetic nanoparticles inhibited CAFs function could attenuate tumor hypoxia by increasing proportion of inflammatory blood vessels and oxygen transport capacity.Therefore,our finding is fundamental for understanding the role of CAFs on affecting SWE stiffness and drugs antitumor effects,which can be further implied in the potential clinical theranostic predicting in neoadjuvant therapy efficacy through non-invasive analyzing of SWE imaging.