期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Reduced graphene oxide-grafted bovine serum albumin/bredigite nanocomposites with high mechanical properties and excellent osteogenic bioactivity for bone tissue engineering 被引量:1
1
作者 Esfandyar Askari Mohammad Rasouli +3 位作者 Seyedeh F.Darghiasi Seyed M.Naghib Yasser Zare Kyong Y.Rhee 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第2期243-257,共15页
The optimization of the scaffolds to provide a suitable matrix and accelerate the regeneration process is vital for bone tissue engineering.However,poor mechanical and biological characteristics remain the primary cha... The optimization of the scaffolds to provide a suitable matrix and accelerate the regeneration process is vital for bone tissue engineering.However,poor mechanical and biological characteristics remain the primary challenges that must be addressed.For example,although bredigite(Br)has shown great potential for application in bone tissue engineering,it easily fails in replacement.In the present work,these challenges are addressed by reinforcing the Br matrix with nanosheets of graphene oxide(rGO)that have been reduced by bovine serum albumin(BSA)in order to enhance the mechanical properties and biological behavior.The reduction of graphene oxide by BSA improves the water stability of the nanosheets and provides an electrostatic interaction between theBSA-rGO nanosheets and theBr particles.The high thermal conductivity of theBSA-rGO nanosheets decreases the porosity of the Br by transferring heat to the core of the tablet.Furthermore,the addition of BSA-rGO nanosheets into the Br matrix enhances the adhesion of G-292 cells on the surface of the tablets.These findings suggest that the tablet consisting of BSA-rGO-reinforced Br has encouraging potential for application in bone tissue engineering. 展开更多
关键词 Bovine serum albumin(BSA) Reduced graphene oxide(rGO) Bredigite Mechanical properties Bone tissue engineering
暂未订购
Tissue engineering approaches for dental pulp regeneration:The development of novel bioactive materials using pharmacological epigenetic inhibitors 被引量:2
2
作者 Ross M.Quigley Michaela Kearney +1 位作者 Oran D.Kennedy Henry F.Duncan 《Bioactive Materials》 SCIE CSCD 2024年第10期182-211,共30页
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment.However,novel approaches... The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment.However,novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative,biologicallydriven regenerative medicine strategies.For example,cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration.These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators(HDACis,DNMTis,and ncRNAs),which are cost-effective and easily applied to stimulate pulp tissue regrowth.Unfortunately,many biological factors hinder the clinical development of regenerative therapies,including a lack of blood supply and poor infection control in the necrotic root canal system.Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability,cost concerns,and regulatory issues.This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration,explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition.It will highlight the components of dental pulp regenerative approaches,describe their current limitations,and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics. 展开更多
关键词 EPIGENETICS Regenerative medicine Regenerative endodontics Biocompatible materials Tissue engineering
原文传递
Cellular interplay to 3D in vitro microphysiological disease model:cell patterning microbiota-gut-brain axis 被引量:1
3
作者 Kamare Alam Lakshmi Nair +6 位作者 Souvik Mukherjee Kulwinder Kaur Manjari Singh Santanu Kaity Velayutham Ravichandiran Sugato Banerjee Subhadeep Roy 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期320-357,共38页
The microbiota-gut-brain axis(MGBA)has emerged as a key prospect in the bidirectional communication between two major organ systems:the brain and the gut.Homeostasis between the two organ systems allows the body to fu... The microbiota-gut-brain axis(MGBA)has emerged as a key prospect in the bidirectional communication between two major organ systems:the brain and the gut.Homeostasis between the two organ systems allows the body to function without disease,whereas dysbiosis has long-standing evidence of etiopathological conditions.The most common communication paths are the microbial release of metabolites,soluble neurotransmitters,and immune cells.However,each pathway is intertwined with a complex one.With the emergence of in vitro models and the popularity of three-dimensional(3D)cultures and Transwells,engineering has become easier for the scientific understanding of neurodegenerative diseases.This paper briefly retraces the possible communication pathways between the gut microbiome and the brain.It further elaborates on three major diseases:autism spectrum disorder,Parkinson’s disease,and Alzheimer’s disease,which are prevalent in children and the elderly.These diseases also decrease patients’quality of life.Hence,understanding them more deeply with respect to current advances in in vitro modeling is crucial for understanding the diseases.Remodeling of MGBA in the laboratory uses many molecular technologies and biomaterial advances.Spheroids and organoids provide a more realistic picture of the cell and tissue structure than monolayers.Combining them with the Transwell system offers the advantage of compartmentalizing the two systems(apical and basal)while allowing physical and chemical cues between them.Cutting-edge technologies,such as bioprinting and microfluidic chips,might be the future of in vitro modeling,as they provide dynamicity. 展开更多
关键词 Microbiota-gut-brain axis Neurodegeneration 3D disease model Organoid Transwell system
暂未订购
Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites
4
作者 Y.ZARE M.T.MUNIR +1 位作者 G.J.WENG K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期663-676,共14页
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ... In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy. 展开更多
关键词 graphene polymer composite stacked nanosheet tunneling conductivity contact resistance INTERPHASE
在线阅读 下载PDF
Fluid Flow and Sub-Bactericidal Release of Silver from Organic Nanocomposite Coatings Enhance <i>ica</i>Operon Expression in <i>Staphylococcus epidermidis</i>
5
作者 Maria G. Katsikogianni Antigoni Foka +5 位作者 Eloisa Sardella Chiara Ingrosso Pietro Favia Annarosa Mangone Iris Spiliopoulou Yannis F. Missirlis 《Journal of Biomaterials and Nanobiotechnology》 2013年第4期30-40,共11页
The present study investigates the effect of a silver (Ag)-containing nanocomposite coating on Staphylococcus epidermidis adhesion and icaA gene expression. Bacterial interactions with organic coatings with and withou... The present study investigates the effect of a silver (Ag)-containing nanocomposite coating on Staphylococcus epidermidis adhesion and icaA gene expression. Bacterial interactions with organic coatings with and without Ag nanoclusters were assessed through a combination of both conventional phenotypic analysis, using microscopy, and genotypic analysis, using the relative reverse transcription Real-Time Polymerase Chain Reaction (RT-PCR). The results suggest that the incorporation of Ag in organic coatings can significantly decrease bacterial adhesion and viability with time, in comparison to the organic coating alone. The initial Ag release though at concentrations lower than the bactericidal, significantly increased icaA gene expression for the bacteria interacting with the Ag containing coating two hours post adhesion, especially under the higher shear rate. Stress-inducing conditions such as sub-bactericidal concentrations of Ag and high shear rate can therefore increase icaA expression, indicating that analysis of gene expression can not only refine our knowledge of bacterial-material interactions, but also yield novel biomarkers for potential use in assessing biomaterials antimicrobial performance. 展开更多
关键词 Bacterial Adhesion SILVER Nanocomposite Plasma POLYMERISATION Gene EXPRESSION Shear
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部