A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ...A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.展开更多
Brachial plexus avulsion(BPA)is a combined injury involving the central and peripheral nervous systems.Patients with BPA often experience severe neuropathic pain(NP)in the affected limb.NP is insensitive to the existi...Brachial plexus avulsion(BPA)is a combined injury involving the central and peripheral nervous systems.Patients with BPA often experience severe neuropathic pain(NP)in the affected limb.NP is insensitive to the existing treatments,which makes it a challenge to researchers and clinicians.Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction,which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP.However,the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear.In this study,through using a novel BPA C7 root avulsion mouse model,we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased,and the markers of sympathetic nervous system activity includingα1 andα2 adrenergic receptors(α1-AR andα2-AR)also increased after BPA.The phenomenon of superexcitation of the sympathetic nervous system,including hypothermia and edema of the affected extremity,was also observed in BPA mice by using CatWalk gait analysis,an infrared thermometer,and an edema evaluation.Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice.Further,intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice.In another branch experiment,we also found the elevated expression of BDNF,TrκB,TH,α1-AR,andα2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry.Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP.This study also opens a novel analgesic target(BDNF)in the treatment of this pain with fewer complications,which has great potential for clinical transformation.展开更多
基金supported by the Army Laboratory Animal Foundation of China,No.SYDW[2020]22(to TC)the Shaanxi Provincial Key R&D Plan General Project of China,No.2022SF-236(to YM)the National Natural Science Foundation of China,No.82202070(to TC)。
文摘A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness.
基金supported by grants from the National Natural Science Foundation of China(82072526,82171212,and 81870867).
文摘Brachial plexus avulsion(BPA)is a combined injury involving the central and peripheral nervous systems.Patients with BPA often experience severe neuropathic pain(NP)in the affected limb.NP is insensitive to the existing treatments,which makes it a challenge to researchers and clinicians.Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction,which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP.However,the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear.In this study,through using a novel BPA C7 root avulsion mouse model,we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased,and the markers of sympathetic nervous system activity includingα1 andα2 adrenergic receptors(α1-AR andα2-AR)also increased after BPA.The phenomenon of superexcitation of the sympathetic nervous system,including hypothermia and edema of the affected extremity,was also observed in BPA mice by using CatWalk gait analysis,an infrared thermometer,and an edema evaluation.Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice.Further,intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice.In another branch experiment,we also found the elevated expression of BDNF,TrκB,TH,α1-AR,andα2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry.Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP.This study also opens a novel analgesic target(BDNF)in the treatment of this pain with fewer complications,which has great potential for clinical transformation.