期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Enhanced photothermal performance of dielectric silicon attached with multiple plasmonic gold nanoparticles
1
作者 Xiangyu Tong Ning Chen +2 位作者 Xiaowen Chen Bin Zhang Xiaohu Wu 《Chinese Physics B》 2025年第8期166-172,共7页
The photothermal properties of dielectric materials at the nanoscale have garnered significant attention,especially in fields such as optical heating,photothermal therapy,and solar utilization.However,although dielect... The photothermal properties of dielectric materials at the nanoscale have garnered significant attention,especially in fields such as optical heating,photothermal therapy,and solar utilization.However,although dielectric materials can concentrate and manipulate light at the nanoscale,they cannot provide sufficient photothermal efficiency in a direct absorption solar collector.Combining plasmonic metal nanoparticles with dielectric nanostructures enables the fabrication of hybrid nanomaterials with excellent photothermal performance.This study presents a novel approach involving uniformly adhering plasmonic gold nanoparticles onto dielectric silicon nanoparticles to enhance the absorption peak,leading to a substantial enhancement of photothermal conversion efficiency.The results demonstrate that the absorption peak of silicon-gold hybrid nanoparticles exceeds that of pure silicon nanoparticles,achieving a 38%increase in photothermal conversion efficiency within a 10 ppm aqueous solution under a 20 mm optical path.The coupling of localized surface plasmon resonance and quadrupole resonance effects enhances the electric field,causing a temperature rise in both the hybrid nanoparticles and the surrounding aqueous solution.Nanostructural modulation studies reveal that the photothermal efficiency of silicon-gold hybrid nanoparticles is positively correlated with gold nanoparticle size but negatively correlated with silicon nanoparticle size.Combining multiple plasmonic nanoparticles with dielectric materials can effectively enhance photothermal performance and hold great application potential in direct absorption solar collectors and solar thermal utilization. 展开更多
关键词 silicon-gold hybrid nanoparticles localized surface plasmon resonance dielectric nanomaterial solar utilization
原文传递
Performance analysis of porous solar absorbers with high-temperature radiation cooling function
2
作者 Haiyan Yu Anqi Chen +3 位作者 Mingdong Li Ahali Hailati Xiaohu Wu Xiaohan Ren 《Chinese Physics B》 2025年第6期98-107,共10页
In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high... In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high temperatures on solar absorption are rarely considered in practical research. Therefore, this study presents a porous zinc and silver sulfide solar absorber with high-temperature radiative cooling capabilities. The solar absorption rate and radiative cooling efficiency in the high-temperature range(636 K–1060 K) are computed using the finite-difference time-domain method. Furthermore, the impact of parameters such as characteristic length, porosity, incident angle, and pore shape factor on both the absorption rate and efficiency of the solar absorber is analyzed. The mechanism is further examined from the perspective of microscopic thermal radiation. The results show that, in the high-temperature range, the solar absorption rate increases with higher porosity and incident angles, reaching its peak when the characteristic length is 1 μm. These findings highlight the significant potential of the solar absorber for efficient solar energy harvesting in photo-thermal conversion applications within a specific high-temperature range. 展开更多
关键词 fishnet metamaterial solar absorber microscale thermal radiation cooling radiation thermal management
原文传递
Dual-band switchable mid-infrared emitter based on In_(3)SbTe_(2)for gas detection application
3
作者 Biyuan Wu Xiqiao Huang Xiaohu Wu 《Chinese Physics B》 2025年第9期303-307,共5页
As a highly energy-efficient and sensitive radiation source,narrowband thermal emitters provide an ideal solution for non-contact gas detection,enabling the widespread application of mid-infrared“molecular fingerprin... As a highly energy-efficient and sensitive radiation source,narrowband thermal emitters provide an ideal solution for non-contact gas detection,enabling the widespread application of mid-infrared“molecular fingerprint”technology.However,most narrowband thermal emitters lack reconfigurability,limiting their adaptability in practical applications.In this study,we propose a novel dual-band switchable narrowband thermal emitter in the mid-infrared region.The emitter consists of an aperiodic Ge/SiO_(2)/Ge/SiO_(2)(GSGS)structure and a phase change material In_(3)SbTe_(2)(IST).When IST is in the crystalline state,the emitter achieves narrowband emission peaks at wavelengths of 3.79μm and 6.12μm,corresponding to the“on”state.However,when IST transitions to the amorphous state,the dual-band high emission disappears and it features angle-and polarization-independent behavior,representing the“off”state.Furthermore,we verify the physical mechanism behind the high emission through phase and amplitude calculations as well as electric field distribution analysis.Notably,the introduction of the IST provides an additional degree of freedom for tunability.Furthermore,by adjusting the thickness of the spacer layer,the emitter can be precisely tuned to match the characteristic absorption peaks of various mid-infrared gases,such as CH_(4),CO_(2),CO,and NO,enabling multi-gas detection in mixed gas environments.The proposed thermal emitter serves as an effective and low-cost alternative for dual-band narrowband mid-infrared light sources,contributing to the advancement of multi-gas detection strategies. 展开更多
关键词 dual-band emitter SWITCHABLE In_(3)SbTe_(2) multi-gas detection
原文传递
Surface-pitted TiN nanoparticles for direct absorption solar collectors
4
作者 Heng Zhang Yuchun Cao +3 位作者 Xiaowen Chen Qihang Yang Ning Chen Xiaohu Wu 《Chinese Physics B》 2025年第6期88-96,共9页
Direct absorption solar collectors use nanofluids to absorb and convert solar radiation. Despite the limitations of the photothermal properties of these nanofluids within the absorption spectra range, modifying the su... Direct absorption solar collectors use nanofluids to absorb and convert solar radiation. Despite the limitations of the photothermal properties of these nanofluids within the absorption spectra range, modifying the surface structure of the nanoparticles can broaden their absorption spectrum, thereby significantly improving the solar thermal conversion efficiency. This paper utilizes the finite element method to investigate the influence of surface pits on the photothermal properties of plasmonic nanoparticles, considering both material composition and surface micro-nano structures. Based on the findings, a novel Ti N nanoparticle is proposed to enhance photothermal performance. This nanoparticle exhibits the lowest average reflectance(0.0145) in the 300–1100 nm wavelength range and the highest light absorption intensity across the solar spectrum, enabling highly efficient solar energy conversion. It not only reduces material costs but also effectively broadens the light absorption spectrum of spherical plasmonic nanoparticles. The distributions of the electric field, magnetic field, and energy field of the nanoparticles indicate that the combination of the “lightning rod” effect and surface plasmon resonance(SPR) significantly enhances both the electric and magnetic fields, thereby increasing the localized heating effect and improving the photothermal performance. Additionally, the number and size of the pits have a significant impact on the absorption efficiency(η_(abs)) of TiN nanoparticles. When the surface of the nanoparticles has 38 pits, η_(abs) can reach90%, with the minimum optical penetration depth(h) of the nanofluid being 7 mm and the minimum volume fraction(f_(v))being 6.95×10^(-6). This study demonstrates that nanoparticles with micro-nano structures have immense potential in solar thermal applications, particularly in the field of direct absorption solar collectors. 展开更多
关键词 solar thermal utilization plasmonic nanoparticles surface plasmon resonance direct absorption solar collector
原文传递
Structural color:an emerging nanophotonic strategy for multicolor and functionalized applications
5
作者 Wenhao Wang Long Wang +8 位作者 Qianqian Fu Wang Zhang Liuying Wang Gu Liu Youju Huang Jie Huang Haoyuan Zhang Fuqiang Guo Xiaohu Wu 《Opto-Electronic Science》 2025年第4期14-56,共43页
Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations,indicators,and information carriers.Structural color offers an intriguing strategy to achieve novel f... Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations,indicators,and information carriers.Structural color offers an intriguing strategy to achieve novel functions and endows color with additional levels of significance in anti-counterfeiting,display,sensor,and printing.Furthermore,structural colors possess excellent properties,such as resistance to extreme external conditions,high brightness,saturation,and purity.Devices and platforms based on structural color have significantly changed our life and are becoming increasingly important.Here,we reviewed four typical applications of structural color and analyzed their advantages and shortcomings.First,a series of mechanisms and fabrication methods are briefly summarized and compared.Subsequently,recent progress of structural color and its applications were discussed in detail.For each application field,we classified them into several types in terms of their functions and properties.Finally,we analyzed recent emerging technologies and their potential for integration into structural color devices,as well as the corresponding challenges. 展开更多
关键词 structural color metasurface photonic crystals dynamic tunable
在线阅读 下载PDF
Constructing electrochemically stable single crystal Ni-rich cathode material via modification with high valence metal oxides
6
作者 Hancheng Shi Jiongzhi Zheng +12 位作者 Tao Wan Hongqiang Wang Zeping Wen Fenghua Zheng Mingru Su Aichun Dou Yu Zhou Ahmad Naveed Panpan Zhang Hailong Wang Ruiqiang Guo Yunjian Liu Dewei Chu 《Journal of Energy Chemistry》 2025年第2期392-401,I0008,共11页
Single crystal Ni-rich cathode materials(SCNCM)are a good supplement in the market of nickel-based materials due to their safety and excellent electrochemical performance.However,the challenges of cation mixing,phase ... Single crystal Ni-rich cathode materials(SCNCM)are a good supplement in the market of nickel-based materials due to their safety and excellent electrochemical performance.However,the challenges of cation mixing,phase change during charge/discharge,and low thermal stability remain unresolved in single crystal particles.To address these issues,SCNCM are rationally modified by incorporating transition metal(TM)oxides,and the influence of metal ions with different valence states on the electrochemical properties of SCNCM is methodically explored through experimental results and theoretical calculations.Enhanced structural stability is demonstrated in SCNCM after the modifications,and the degree of improvement in the matrix materials varies depending on the valence state of doped TM ions.The highest structural stability is found in WO_(3)-modified SCNCM,due to the smaller effective ion radii,higher electro-negativity,stronger W-O bond,and efficient suppression of oxygen vacancy generation.As a result,WO_(3)-modified SCNCM have outstanding cycle performance,with a capacity retention rate of90.2%after 200 cycles.This study provides an insight into the design of advanced SCNCM with enhanced reversibility and cyclability. 展开更多
关键词 Single crystal Ni-rich material Lithium-ion battery lon doping In-situ coating Strengthening mechanism analysis
在线阅读 下载PDF
Embedded solar adaptive optics telescope:achieving compact integration for high-efficiency solar observations
7
作者 Naiting Gu Hao Chen +11 位作者 Ao Tang Xinlong Fan Carlos Quintero Noda Yawei Xiao Libo Zhong Xiaosong Wu Zhenyu Zhang Yanrong Yang Zao Yi Xiaohu Wu Linhai Huang Changhui Rao 《Opto-Electronic Advances》 2025年第5期60-74,共15页
Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excess... Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities. 展开更多
关键词 embedded solar adaptive optics telescope(ESAOT) Hartmann-Shack full-wavefront sensor(HS f-WFS) deformable secondary mirror(DSM) high-resolution solar observations solar telescopes
在线阅读 下载PDF
Near-field radiative heat transfer between nanoporous GaN films
8
作者 韩晓政 张纪红 +2 位作者 刘皓佗 吴小虎 冷惠文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期109-120,共12页
Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional path... Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation. 展开更多
关键词 near-field radiative heat transfer nanoporous GaN film surface phonon polaritons surface plasmon polaritons
原文传递
Atomic-scale simulations in multi-component alloys and compounds:A review on advances in interatomic potential 被引量:4
9
作者 Feiyang Wang Hong-Hui Wu +8 位作者 Linshuo Dong Guangfei Pan Xiaoye Zhou Shuize Wang Ruiqiang Guo Guilin Wu Junheng Gao Fu-Zhi Dai Xinping Mao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第34期49-65,共17页
Multi-component alloys have demonstrated excellent performance in various applications,but the vast range of possible compositions and microstructures makes it challenging to identify optimized alloys for specific pur... Multi-component alloys have demonstrated excellent performance in various applications,but the vast range of possible compositions and microstructures makes it challenging to identify optimized alloys for specific purposes.To overcome this challenge,large-scale atomic simulation techniques have been widely used for the design and optimization of multi-component alloys.The capability and reliability of large-scale atomic simulations essentially rely on the quality of interatomic potentials that describe the interactions between atoms.This work provides a comprehensive summary of the latest advances in atomic simulation techniques for multi-component alloys.The focus is on interatomic potentials,including both conventional empirical potentials and newly developed machine learning potentials(MLPs).The fitting processes for different types of interatomic potentials applied to multi-component alloys are also discussed.Finally,the challenges and future perspectives in developing MLPs are thoroughly addressed.Overall,this review provides a valuable resource for researchers interested in developing optimized multicomponent alloys using atomic simulation techniques. 展开更多
关键词 Multi-component alloys Atomic simulation Empirical potentials Machine learning potentials
原文传递
Arranging cation mixing and charge compensation of TiNb_(2)O_(7) with W^(6+) doping for high lithium storage performance 被引量:1
10
作者 Pei Cui Guo-Tai Li +8 位作者 Pan-Pan Zhang Tao Wan Mei-Qing Li Xue-Li Chen Yu Zhou Rui-Qiang Guo Ming-Ru Su Yun-Jian Liu De-Wei Chu 《Rare Metals》 SCIE EI CAS CSCD 2023年第10期3364-3377,共14页
TiNb_(2)O_(7) is an advanced anode material for high-energy density lithium-ion batteries(LIBs) due to its considerable specific capacity and satisfactory safety.However,its rate capability is limited by its poor ioni... TiNb_(2)O_(7) is an advanced anode material for high-energy density lithium-ion batteries(LIBs) due to its considerable specific capacity and satisfactory safety.However,its rate capability is limited by its poor ionic conductivity and electronic conductivity.To solve this problem,TiNb_(2)O_(7) with W^(6+) doping was synthesized by a convenient solid-state method.The doping of W^(6+) will lead to arranging cation mixing and charge compensation.The cation rearrangement creates a new Li-conductive environment for lithiation,resulting in a low-energy barrier and the fast Li^(+)storage/diffusion.The results show that the Li^(+)diffusion coefficient of W_(0.06)Ti_(0.91)Nb_(2)O_(7) is increased by 9.96 times greater than that of TiNb_(2)O_(7).Besides,as the calculation proves,due to the partial reduction of the Nb^(5+)and Ti^(4+) caused by charge compensation,W^(6+)doping results in low charge transfer resistance and excellent electronic conductivity.Moreover,W^(6+) doping accounts for a high pseudocapacitive contribution.At the scan rate of 1 mV·s^(-1),the pseudocapacitive contribution for TiNb_(2)O_(7) is 78%,while that for W_(0.06)Ti_(0.91)Nb_(2)O_(7) increases to 83%.The reversible specific capacity of W_(0.06)Ti_(0.91)Nb_(2)O_(7) after 600 cycles is maintained at 148.90mAh·g^(-1) with a loss of only 16.37% at 10.0C.Also,it delivers a commendable capacity of 161.99 mAh·g^(-1) at20.0C.Even at 30.0C,it still retains a satisfactory capacity of 147.22 mAh·g^(-1),much higher than TiNb_(2)O_(7)(97.49mAh·g^(-1)).Our present study provides ideas for the development of electrode materials for lithium-ion batteries. 展开更多
关键词 Lithium-ion batteries(LIBs) Titanium niobium oxide W^(6+)doping High-rate capability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部