Human extracellular superoxide dismutase(hEC-SOD) is a secreted tetrameric protein involved in the protection of a human body from oxygen free radicals. Its three-dimensional structure has not been confirmed. hEC-SOD ...Human extracellular superoxide dismutase(hEC-SOD) is a secreted tetrameric protein involved in the protection of a human body from oxygen free radicals. Its three-dimensional structure has not been confirmed. hEC-SOD couldn′t be expressed in E.coli. We constructed a hybrid enzyme, which comprises the N-terminal and C-terminal domains from hEC-SOD, fused it to human Cu,Zn-SOD. The hybrid enzyme is expressed successfully in E.coli. Further, we analyzed the expression of hEC-SOD in E.coli by mRNA differential displaying.展开更多
To enhance the relative movement of domains, we inserted a random sequence of fifteen-peptide into the three domains of L-aspartase. By means of directed screening, the three isoforms of monomeric, dimmeric and tetram...To enhance the relative movement of domains, we inserted a random sequence of fifteen-peptide into the three domains of L-aspartase. By means of directed screening, the three isoforms of monomeric, dimmeric and tetrameric enzymes were obtained. Compared to the wild-type tetrameric L-asparease, these mutants remained 19.7%, 42.3%, and 92% of the enzyme activity, respectively. Moreover, the examination of enzyme properties revealed that their k_ cat and K_M changed in varying degrees, and the optimum pH shifted towards acidic pH, while the dependence of the activity of enzyme on Mg 2+ concentration and thermostability increased. Therefore this strategy provides a novel approach to directed evolution of enzymes.展开更多
文摘Human extracellular superoxide dismutase(hEC-SOD) is a secreted tetrameric protein involved in the protection of a human body from oxygen free radicals. Its three-dimensional structure has not been confirmed. hEC-SOD couldn′t be expressed in E.coli. We constructed a hybrid enzyme, which comprises the N-terminal and C-terminal domains from hEC-SOD, fused it to human Cu,Zn-SOD. The hybrid enzyme is expressed successfully in E.coli. Further, we analyzed the expression of hEC-SOD in E.coli by mRNA differential displaying.
文摘To enhance the relative movement of domains, we inserted a random sequence of fifteen-peptide into the three domains of L-aspartase. By means of directed screening, the three isoforms of monomeric, dimmeric and tetrameric enzymes were obtained. Compared to the wild-type tetrameric L-asparease, these mutants remained 19.7%, 42.3%, and 92% of the enzyme activity, respectively. Moreover, the examination of enzyme properties revealed that their k_ cat and K_M changed in varying degrees, and the optimum pH shifted towards acidic pH, while the dependence of the activity of enzyme on Mg 2+ concentration and thermostability increased. Therefore this strategy provides a novel approach to directed evolution of enzymes.