Advances in wearable electronics and information technology drive sports data collection and analysis toward real-time visualization and precision. The growing pursuit of athleticism and healthy life makes it appealin...Advances in wearable electronics and information technology drive sports data collection and analysis toward real-time visualization and precision. The growing pursuit of athleticism and healthy life makes it appealing for individuals to track their real-time health and exercise data seamlessly. While numerous devices enable sports and health monitoring, maintaining comfort over long periods remains a considerable challenge, especially in high-intensity and sweaty sports scenarios. Textiles, with their breathability, deformability, and moisture-wicking abilities, ensure exceptional comfort during prolonged wear, making them ideal for wearable platforms. This review summarized the progress of research on textile-based sports monitoring devices. First, the design principles and fabrication methods of smart textiles were introduced systematically. Textiles undergo a distinctive fiber-yarn-fabric or fiber-fabric manufacturing process that allows for the regulation of performance and the integration of functional elements at every step. Then, the performance requirements for precise sports data collection of smart textiles, including main vital signs, joint movement, and data transmission, were discussed. Lastly, the applications of smart textiles in various sports scenarios are demonstrated. Additionally, the review provides an in-depth analysis of the emerging challenges, strategies, and opportunities for the research and development of sports-oriented smart textiles. Smart textiles not only maintain comfort and accuracy in sports, but also serve as inexpensive and efficient information-gathering terminals. Therefore, developing multifunctional, cost-effective textile-based systems for personalized sports and healthcare is a pressing need for the future of intelligent sports.展开更多
Wearable electronic textiles(e-textiles)with embedded electronics offer promising solutions for unobtrusive,real-time health monitoring,enhancing healthcare efficiency.However,their adoption is limited by performance ...Wearable electronic textiles(e-textiles)with embedded electronics offer promising solutions for unobtrusive,real-time health monitoring,enhancing healthcare efficiency.However,their adoption is limited by performance and sustainability challenges in materials,manufacturing,and recycling.This study introduces a sustainable paradigm for the fabrication of fully inkjet-printed Smart,Wearable,and Eco-friendly Electronic Textiles(SWEET)with the first comprehensive assessments of the biodegradability and life cycle assessment(LCA).SWEET addresses existing limitations,enabling concurrent and continuous monitoring of human physiology,including skin surface temperature(at temperature coefficient of resistance,TCR value of~-4.4%℃^(-1))and heart rate(-74 beats per minute,bpm)separately and simultaneously like the industry gold standard,using consistent,versatile,and highly efficient inkjet-printed graphene and Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)-based wearable e-textiles.Demonstrations with a wearable garment on five human participants confirm the system’s capability to monitor their electrocardiogram(ECG)signals and skin temperature.Such sustainable and biodegradable e-textiles decompose by-48%in weight and lost-98%strength over 4months.Life cycle assessment(LCA)reveals that the graphene-based electrode has the lowest climate change impact of-0.037 kg CO_(2) eq,40 times lower than reference electrodes.This approach addresses material and manufacturing challenges,while aligning with environmental responsibility,marking a significant leap forward in sustainable e-textile technology for personalized healthcare management.展开更多
Aqueous Zinc-metal batteries(AZBs)hold great promise for energy storage applications,yet their practical deployment is hindered by challenges such as dendrite formation and parasitic side reactions at the Zn anode.Her...Aqueous Zinc-metal batteries(AZBs)hold great promise for energy storage applications,yet their practical deployment is hindered by challenges such as dendrite formation and parasitic side reactions at the Zn anode.Herein,we developed a three-dimensional Cu-coated flexible host via an electroless plating strategy on cotton cloth(Cu@CT).This design effectively homogenizes the local current density,spatially regulates Zn-ion flux,and accommodates substantial volume changes during cycling.Additionally,the zincophilic Cu coating facilitates Zn nucleation and deposition by forming Cu-Zn alloys,which reduce the Zn nucleation overpotential and promote uniform Zn plating.As a result,the Cu@CT based anode exhibits highly reversible Zn plating/stripping behavior with an average Coulombic efficiency of 99.58%over 800 cycles,accompanied by low polarization and dendrite-free behavior.Moreover,the Zn-I2 full cell demonstrates excellent rate capability,delivering a discharge capacity of 114 mA h g^(-1) at 10 A g^(-1),along with stable long-term cycling performance over 950 cycles.The electroless plating strategy may represent a promising pathway for advancing high-performance AZBs.展开更多
Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the...Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.展开更多
Current protective clothing often lacks sufficient comfort to ensure efficient performance of healthcare workers.Developing protective textiles with high air and moisture permeability is a potential and effective solu...Current protective clothing often lacks sufficient comfort to ensure efficient performance of healthcare workers.Developing protective textiles with high air and moisture permeability is a potential and effective solution to discomfort of medical protective clothing.However,realizing the facile production of a protective textile that combines safety and comfort remains a challenge.Herein,we report the fabrication of highly permeable protective textiles(HPPT)with micro/nano-networks,using non-solvent induced phase separation synergistically driven by CaCl_(2) and fluorinated polyurethane,combined with spraying technique.The HPPT demonstrates excellent liquid repellency and comfort,ensuring high safety and a dry microenvironment for the wearer.The textile exhibits not only a high hydrostatic pressure(12.86 kPa)due to its tailored small mean pore size(1.03μm)and chemical composition,but also demonstrates excellent air permeability(14.24 mm s^(−1))and moisture permeability(7.92 kg m^(−2)d^(−1))owing to the rational combination of small pore size and high porosity(69%).The HPPT offers superior comfort compared to the commercially available protective materials.Additionally,we elucidated a molding mechanism synergistically inducted by diffusion-dissolution-phase separation.This research provides an innovative perspective on enhancing the comfort of medical protective clothing and offers theoretical support for regulating of pore structure during phase separations.展开更多
Mechanical energy produced by human motion is ubiquitous,continuous,and usually not utilized,making it an attractive target for sustainable electricity-harvesting applications.In this study,flexible magnetic-Juncus ef...Mechanical energy produced by human motion is ubiquitous,continuous,and usually not utilized,making it an attractive target for sustainable electricity-harvesting applications.In this study,flexible magnetic-Juncus effusus(M-JE)fibers were prepared from plant-extracted three-dimensional porous Juncus effusus(JE)fibers decorated with polyurethane and magnetic particles.The M-JE fibers were woven into fabrics and used for mechanical energy harvesting through electromagnetic induction.The M-JE fabric and induction coil,attached to the human wrist and waist,yielded continuous and stable voltage(2 V)and current(3 mA)during swinging.The proposed M-JE fabric energy harvester exhibited good energy harvesting potential and was capable of quickly charging commercial capacitors to power small electronic devices.The proposed M-JE fabric exhibited good mechanical energy harvesting performance,paving the way for the use of natural plant fibers in energy-harvesting fabrics.展开更多
Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and...Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.展开更多
The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environment...The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environmental concerns,the textile ennoblement sector is the most critical of the textile production chain,especially the traditional dyeing processes.As an alternative to current problems,dyeing with supercritical CO_(2)(scCO_(2))has been presented as a clean and efficient process for a sustainable textile future.Supercritical fluid dyeing(SFD)has shown a growing interest due to its significant impact on environmental preservation and social,economic,and financial gains.The main SFD benefits include economy and reuse of non-adsorbed dyes;reduction of process time and energy expenditure;capture of atmospheric CO_(2)(greenhouse gas);use and recycling of CO_(2)in SFD;generation of carbon credits;water-free process;effluent-free process;reduction of CO_(2)emission and auxiliary chemicals.Despite being still a non-scalable and evolving technology,SFD is the future of dyeing.This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD.The SFD technique was introduced,along with its latest advances and future perspectives.Financial and environmental gains were also discussed.展开更多
Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnos...Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnosis.However,traditional methods,involving elastomer film-based substrates or encapsulation techniques,often fall short due to mechanical mismatches,discomfort,lack of breathability,and limitations in sensing abilities.Consequently,there is a pressing need,yet it remains a significant challenge to create pressure sensors that are not only highly breathable,flexible,and comfortable but also sensitive,durable,and biocompatible.Herein,we present a biocompatible and breathable fabric-based pressure sensor,using nonwoven fabrics as both the sensing electrode(coated with MXene/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate[PEDOT:PSS])and the interdigitated electrode(printed with MXene pattern)via a scalable spray-coating and screen-coating technique.The resultant device exhibits commendable air permeability,biocompatibility,and pressure sensing performance,including a remarkable sensitivity(754.5 kPa^(−1)),rapid response/recovery time(180/110 ms),and robust cycling stability.Furthermore,the integration of PEDOT:PSS plays a crucial role in protecting the MXene nanosheets from oxidation,significantly enhancing the device's long-term durability.These outstanding features make this sensor highly suitable for applications in fullrange human activities detection and disease diagnosis.Our study underscores the promising future of flexible pressure sensors in the realm of intelligent wearable electronics,setting a new benchmark for the industry.展开更多
Two-dimensional(2D)MXenes have emerged as an archetypical layered material combining the properties of an organic-inorganic hybrid offering materials sustainability for a range of applications.Their surface functional...Two-dimensional(2D)MXenes have emerged as an archetypical layered material combining the properties of an organic-inorganic hybrid offering materials sustainability for a range of applications.Their surface functional groups and the associated chemical properties'tailorability through functionalizing MXenes with other materials as well as hydrophilicity and high conductivity enable them to be the best successor for various applications in textile industries,especially in the advancement of smart textiles and remediation of textile wastewater.MXene-based textile composite performs superb smartness in high-performance wearables as well as in the reduction of textile dyes from wastewater.This article critically reviews the significance of MXenes in two sectors of the textile industry.Firstly,we review the improvement of textile raw materials such as fiber,yarn,and fabric by using MXene as electrodes in supercapacitors,pressure sensors.Secondly,we review advancements in the removal of dyes from textile wastewater utilizing MXene as an absorbent by the adsorption process.MXene-based textiles demonstrated superior strength through the strong bonding between MXene and textile structures as well as the treatment of adsorbate by adsorbent(MXene in the adsorption process).We identify critical gaps for further research to enable their real-life applications.展开更多
This review explores the evolution of the textile handicraft industry in Saudi Arabia, emphasizing its cultural and economic significance. The study highlights the transition from traditional practices to modern innov...This review explores the evolution of the textile handicraft industry in Saudi Arabia, emphasizing its cultural and economic significance. The study highlights the transition from traditional practices to modern innovations and examines the impact of globalization and technological advancements on the industry. Key innovations are discussed, demonstrating their role in enhancing textile production while preserving cultural heritage. Major challenges, such as competition from industrial textiles and the need for sustainable practices, are identified. Opportunities for growth are explored, including leveraging tourism and international markets to promote Saudi handicrafts. The social and cultural impacts of the sector are underscored, particularly in sustaining community traditions and providing economic opportunities for artisans. Strategic recommendations for supporting and advancing the industry are offered, ensuring its continued relevance and sustainability in a rapidly changing global market. This analysis provides a robust framework for understanding the current state and future potential of Saudi Arabia’s textile handicraft industry.展开更多
This paper discusses the use of atmospheric pressure dielectric barrier discharge(DBD)plasma treatment to enhance the surface qualities of viscose fabrics.The study explores the effects of different plasma gases,disch...This paper discusses the use of atmospheric pressure dielectric barrier discharge(DBD)plasma treatment to enhance the surface qualities of viscose fabrics.The study explores the effects of different plasma gases,discharge voltages,and exposure times on the treated fabrics.The findings emphasize the importance of optimizing the plasma's peak voltage to achieve the desired surface treatment outcomes.The document also presents data on colour strength,wettability,colour fastness,and tensile strength of the treated fabrics,as well as scanning electron microscopy(SEM)analysis of surface morphology and chemical analysis using fouriertransition infrared spectroscopy(FTIR)and energy dispersive X-ray(EDX).The results show that treatment at a peak voltage of 11.83 k V is more efficient,except for the tensile strength which is enhanced at a peak voltage of 8.92 k V.The oxygen plasma treatment significantly improves the colour strength,which exhibits an increase from 11 to 18.The intensified colour was attributed to the significant influence of electrostatic interactions between the charged hydroxyl groups of the oxygen plasma treated viscose textiles and the dye molecules,which enhance the printability.The oxygen DBD plasma exhibits a higher ability to enhance the properties of textiles when compared to air and argon plasmas.This study presents a sustainable,economical,secure,and ecologically friendly approach to explore new fabrics for specific uses.展开更多
Antifouling textiles have been a hot research field in the last ten years.But lately,the European Union(EU)is expected to ban the production of C6 fluorinated water repellent,oil repellent and antifouling agents from ...Antifouling textiles have been a hot research field in the last ten years.But lately,the European Union(EU)is expected to ban the production of C6 fluorinated water repellent,oil repellent and antifouling agents from 2025,achieving complete fluoride-free antifouling measures.In the context of the current policy regulations on fluorine-free treatment in the waterproof,oil repellent and antifouling finishing field,this paper conducts a literature survey and comprehensive understanding of the current research status and trend in fluorine-free antifouling finishing.CiteSpace and Carrot2 are used to conduct a literature review of the latest papers in two databases,Web of Science(WoS)and China National Knowledge Infrastructure(CNKI).Firstly,the theoretical evolution and technical characteristics of textiles antifouling finishing technology are systematically discussed,and the technological differences of antifouling finishing textiles for different demands are compared.Secondly,the three main stages of the development of textile antifouling finishing technology and its corresponding finishing methods are summarized.Finally,three paths for the future development of fluorine-free antifouling finishing are prospected:construction of low surface energy,construction of uniform rough surface and low surface energy,and construction of multistage rough surface with low surface energy.To facilitate the transition of the industrial sector to fluorine-free,regulatory restrictions could be strengthened by enhancing the sampling inspection of apparel fabrics,detecting fluorine in wastewater discharges and restricting the production of fluorine-containing finishing agents by manufacturers.展开更多
Textile economics is a discipline that uses the basic principles and methods of economics to study textile production,sales and international trade.Learning the course is conducive to training applied senior engineeri...Textile economics is a discipline that uses the basic principles and methods of economics to study textile production,sales and international trade.Learning the course is conducive to training applied senior engineering and technical personnel who understand both technology and management.There are problems such as students have no foundation in economics,students have no enthusiasm for studying textile economics,not enough teachers in textile economics,unreasonable textbook layout,single teaching methods and means,lack of teaching experience,teaching resources and teaching conditions,etc.Therefore,the teaching of textile economics is in urgent need of reform.展开更多
Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powe...Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.展开更多
The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have ...The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have reported the effect of conductive ink formulation on electrodes directly screen-printed on flexible substrates,especially printing UV curable conductive ink on common textiles.In this work,a novel UV curable nano-silver ink with short-time curing and low temperature features was developed to manufacture the fully flexible and washable textile-based electrodes by screen printing.The aim of this study was to determine the influence of ink formulation on UV-curing speed,degree of conversion,morphology and electrical properties of printed electrodes.Besides,the application demonstration was highlighted.The curing speed and adhesion of ink was found depending dominantly on the type of prepolymer and the functionality of monomer,and the type of photoinitiator had a decisive effect on the curing speed,degree of double bond conversion and morphology of printed patterns.The nano-silver content is key to guarantee the suitable screen-printability of conductive ink and therefore the uniformity and high conductivity of textile-based electrodes.Optimally,an ink formulation with 60 wt%nano-silver meets the potential application requirements.The electrode with 1.0 mm width showed significantly high electrical conductivity of 2.47×10^(6)S/m,outstanding mechanical durability and satisfactory washability.The high-performance of electrodes screen-printed on different fabrics proved the feasibility and utility of UV curable nano-silver ink.In addition,the application potential of the conductive ink in fabricating electronic textiles(e-textiles)was confirmed by using the textile-based electrodes as the cathodes of silverzinc batteries.We anticipate the developed UV curable conductive ink for screen-printing on textiles can provide a novel design opportunity for flexible and wearable e-textile applications.展开更多
Various types of wound debridement approaches are currently available in clinical practice such as autolytie, enzymatic. biodebridement, mechanical, and surgical debridemenl techniques. A critical look at these variou...Various types of wound debridement approaches are currently available in clinical practice such as autolytie, enzymatic. biodebridement, mechanical, and surgical debridemenl techniques. A critical look at these various options can explain their potential but also their limitations. In this study, a novel textile pad, which is composed of polyester filaments on the fleecy side and a bioeompatible coating on the opposite side, was made to provide a safe, inexpensive, easier and especially more efficient debridement process that can be used in all healthcare settings by all healthcare practitioners. Eighteen kinds of samples were prepared with different pile density, ground yarn count and coating amount. Dimensional morphology, stitch density, mass per unit area and mechanical properties were investigated to study the intrinsic relationship of structure and properties of textile pad for wound debridement. Results showed that tensile strength and suturing strength at piped site increased obviously with the increment of ground yarn count, while the amount of coating could also have a slight impact on these two properties. However, compressive load was mainly affected by pile density, with no obvious relation to ground yarn count and coating amount.展开更多
As a critical component for the realization of flexible electronics,multifunctional electronic textiles(etextiles)still struggle to achieve controllable printing accuracy,excellent flexibility,decent washability and s...As a critical component for the realization of flexible electronics,multifunctional electronic textiles(etextiles)still struggle to achieve controllable printing accuracy,excellent flexibility,decent washability and simple manufacturing.The printing process of conductive ink plays an important role in manufacturing e-textiles and meanwhile is also the main source of printing defects.In this work,we report the preparation of fully flexible and washable textile-based conductive circuits with screen-printing method based on novel-developed UV-curing conductive ink that contains low temperature and fast cure features.This work systematically investigated the correlation between ink formulation,rheological properties,screen printability on fabric substrates,and the electrical properties of the e-textile made thereafter.The rheological behaviors,including the thixotropic behavior and oscillatory stress sweep of the conductive inks was found depending heavily on the polymer to diluent ratio in the formulation.Subsequently,the rheological response of the inks during screen printing showed determining influence to their printability on textile,that the proper control of ink base viscosity,recovery time and storage/loss modulus is key to ensure the uniformity of printed conductive lines and therefore the electrical conductivity of fabricated e-textiles.A formulation with 24 wt%polymer and 10.8 wt%diluent meets all these stringent requirements.The conductive lines with 1.0 mm width showed exceptionally low resistivity of 2.06×10^(-5)Ωcm Moreover,the conductive lines presented excellent bending tolerance,and there was no significant change in the sample electrical resistance during 10 cycles of washing and drying processes.It is believed that these novel findings and the promising results of the prepared product will provide the basic guideline to the ink formulation design and applications for screen-printing electronics textiles.展开更多
Human motion analysis consists of real-time monitoring and recording of human body’s kinematics. It is very essential to track ambulatory and dailylife human motion, which is crucial for many applications and discipl...Human motion analysis consists of real-time monitoring and recording of human body’s kinematics. It is very essential to track ambulatory and dailylife human motion, which is crucial for many applications and disciplines.Electronic textiles(e-textiles) afford a valid alternative to traditional solidstate sensors due to their merits of low cost, lightweight, flexibility, and feasibility to fit various human bodies. In this mini-review, textile-based sensor platforms and human motion analysis are well discussed in Section 1.Second, theoretical principles of textile-based strain sensors are introduced including resistive, capacitive, and piezoelectrical sensors. Section 3 focuses on various types of textile materials that are functionalized as sensing systems by intrinsic or extrinsic modifications. Section 4 summaries various types of e-textile-based strain sensors for human motion analysis. The final two sections mainly present perspectives and challenges, and conclusions,respectively.展开更多
In recent years, supply chain management (SCM) has been in popularity as a new management philosophy for all industries, including textile and apparel industries. The textile-apparel supply chain is relatively compl...In recent years, supply chain management (SCM) has been in popularity as a new management philosophy for all industries, including textile and apparel industries. The textile-apparel supply chain is relatively complex because it encompasses many participants such as yarn manufacturers, fabric manufacturers, garment manufacturers and retailers. Although many scholars are engaged in researching SCM in textile and apparel industries, a systematic classification of textile-apparel chain does not exist. The paper proposes three types of textile-apparel chain, nominated vertical integration chain, traditional sourcing chain and 3P-hub (third party as the hub) chain. Different coordinators exist in different types of chain. Three Hong Kong headquartered companies, Esquel Group, TAL Apparel Ltd., and Li & Fang (Trading) Ltd. are used as cases responding to each type of the structures respectively.展开更多
基金financially supported by the National Natural Science Foundation of China (52073051, 52373054)the Fundamental Research Funds for the Central Universities (2232022A-04, 24D110109/005, 2232024G-06-01)+1 种基金Natural Science Foundation of Shanghai (23ZR1400900)Shanghai Frontier Science Research Center for Modern Textiles。
文摘Advances in wearable electronics and information technology drive sports data collection and analysis toward real-time visualization and precision. The growing pursuit of athleticism and healthy life makes it appealing for individuals to track their real-time health and exercise data seamlessly. While numerous devices enable sports and health monitoring, maintaining comfort over long periods remains a considerable challenge, especially in high-intensity and sweaty sports scenarios. Textiles, with their breathability, deformability, and moisture-wicking abilities, ensure exceptional comfort during prolonged wear, making them ideal for wearable platforms. This review summarized the progress of research on textile-based sports monitoring devices. First, the design principles and fabrication methods of smart textiles were introduced systematically. Textiles undergo a distinctive fiber-yarn-fabric or fiber-fabric manufacturing process that allows for the regulation of performance and the integration of functional elements at every step. Then, the performance requirements for precise sports data collection of smart textiles, including main vital signs, joint movement, and data transmission, were discussed. Lastly, the applications of smart textiles in various sports scenarios are demonstrated. Additionally, the review provides an in-depth analysis of the emerging challenges, strategies, and opportunities for the research and development of sports-oriented smart textiles. Smart textiles not only maintain comfort and accuracy in sports, but also serve as inexpensive and efficient information-gathering terminals. Therefore, developing multifunctional, cost-effective textile-based systems for personalized sports and healthcare is a pressing need for the future of intelligent sports.
基金funding from Commonwealth Scholarship Commission(CSC)U.K.for a Ph.D.scholarship for Marzia DulalUKRI Research England the Expanding Excellence in England(E3)grant.
文摘Wearable electronic textiles(e-textiles)with embedded electronics offer promising solutions for unobtrusive,real-time health monitoring,enhancing healthcare efficiency.However,their adoption is limited by performance and sustainability challenges in materials,manufacturing,and recycling.This study introduces a sustainable paradigm for the fabrication of fully inkjet-printed Smart,Wearable,and Eco-friendly Electronic Textiles(SWEET)with the first comprehensive assessments of the biodegradability and life cycle assessment(LCA).SWEET addresses existing limitations,enabling concurrent and continuous monitoring of human physiology,including skin surface temperature(at temperature coefficient of resistance,TCR value of~-4.4%℃^(-1))and heart rate(-74 beats per minute,bpm)separately and simultaneously like the industry gold standard,using consistent,versatile,and highly efficient inkjet-printed graphene and Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)-based wearable e-textiles.Demonstrations with a wearable garment on five human participants confirm the system’s capability to monitor their electrocardiogram(ECG)signals and skin temperature.Such sustainable and biodegradable e-textiles decompose by-48%in weight and lost-98%strength over 4months.Life cycle assessment(LCA)reveals that the graphene-based electrode has the lowest climate change impact of-0.037 kg CO_(2) eq,40 times lower than reference electrodes.This approach addresses material and manufacturing challenges,while aligning with environmental responsibility,marking a significant leap forward in sustainable e-textile technology for personalized healthcare management.
基金supported by the National Natural Science Foundation of China(52301285,52173091,and 22208331)Wuhan Science and Technology Bureau(2024040801020319)Department of Science and Technology of Hubei Province(2021CSA076).
文摘Aqueous Zinc-metal batteries(AZBs)hold great promise for energy storage applications,yet their practical deployment is hindered by challenges such as dendrite formation and parasitic side reactions at the Zn anode.Herein,we developed a three-dimensional Cu-coated flexible host via an electroless plating strategy on cotton cloth(Cu@CT).This design effectively homogenizes the local current density,spatially regulates Zn-ion flux,and accommodates substantial volume changes during cycling.Additionally,the zincophilic Cu coating facilitates Zn nucleation and deposition by forming Cu-Zn alloys,which reduce the Zn nucleation overpotential and promote uniform Zn plating.As a result,the Cu@CT based anode exhibits highly reversible Zn plating/stripping behavior with an average Coulombic efficiency of 99.58%over 800 cycles,accompanied by low polarization and dendrite-free behavior.Moreover,the Zn-I2 full cell demonstrates excellent rate capability,delivering a discharge capacity of 114 mA h g^(-1) at 10 A g^(-1),along with stable long-term cycling performance over 950 cycles.The electroless plating strategy may represent a promising pathway for advancing high-performance AZBs.
文摘Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.
基金the Fundamental Research Funds for the Central Universities(No.2232023Y-01)the National Natural Science Foundation of China(Nos.52073052)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(No.CUSF-DH-D-2023015).
文摘Current protective clothing often lacks sufficient comfort to ensure efficient performance of healthcare workers.Developing protective textiles with high air and moisture permeability is a potential and effective solution to discomfort of medical protective clothing.However,realizing the facile production of a protective textile that combines safety and comfort remains a challenge.Herein,we report the fabrication of highly permeable protective textiles(HPPT)with micro/nano-networks,using non-solvent induced phase separation synergistically driven by CaCl_(2) and fluorinated polyurethane,combined with spraying technique.The HPPT demonstrates excellent liquid repellency and comfort,ensuring high safety and a dry microenvironment for the wearer.The textile exhibits not only a high hydrostatic pressure(12.86 kPa)due to its tailored small mean pore size(1.03μm)and chemical composition,but also demonstrates excellent air permeability(14.24 mm s^(−1))and moisture permeability(7.92 kg m^(−2)d^(−1))owing to the rational combination of small pore size and high porosity(69%).The HPPT offers superior comfort compared to the commercially available protective materials.Additionally,we elucidated a molding mechanism synergistically inducted by diffusion-dissolution-phase separation.This research provides an innovative perspective on enhancing the comfort of medical protective clothing and offers theoretical support for regulating of pore structure during phase separations.
基金National Natural Science Foundation of China(52303064 and U21A2095)the National Key Research and Development Program of China(2022YFB3805800)the Shandong Key Research and Development Program(2023CXGC010612).
文摘Mechanical energy produced by human motion is ubiquitous,continuous,and usually not utilized,making it an attractive target for sustainable electricity-harvesting applications.In this study,flexible magnetic-Juncus effusus(M-JE)fibers were prepared from plant-extracted three-dimensional porous Juncus effusus(JE)fibers decorated with polyurethane and magnetic particles.The M-JE fibers were woven into fabrics and used for mechanical energy harvesting through electromagnetic induction.The M-JE fabric and induction coil,attached to the human wrist and waist,yielded continuous and stable voltage(2 V)and current(3 mA)during swinging.The proposed M-JE fabric energy harvester exhibited good energy harvesting potential and was capable of quickly charging commercial capacitors to power small electronic devices.The proposed M-JE fabric exhibited good mechanical energy harvesting performance,paving the way for the use of natural plant fibers in energy-harvesting fabrics.
文摘Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.
文摘The clothing industry is considered one of the most polluting industries on the planet due to the high consumption of water,energy,chemicals/dyes,and high generation of solid waste and effluents.Faced with environmental concerns,the textile ennoblement sector is the most critical of the textile production chain,especially the traditional dyeing processes.As an alternative to current problems,dyeing with supercritical CO_(2)(scCO_(2))has been presented as a clean and efficient process for a sustainable textile future.Supercritical fluid dyeing(SFD)has shown a growing interest due to its significant impact on environmental preservation and social,economic,and financial gains.The main SFD benefits include economy and reuse of non-adsorbed dyes;reduction of process time and energy expenditure;capture of atmospheric CO_(2)(greenhouse gas);use and recycling of CO_(2)in SFD;generation of carbon credits;water-free process;effluent-free process;reduction of CO_(2)emission and auxiliary chemicals.Despite being still a non-scalable and evolving technology,SFD is the future of dyeing.This review presented a comprehensive overview of the environmental impacts caused by traditional processes and confronted the advantages of SFD.The SFD technique was introduced,along with its latest advances and future perspectives.Financial and environmental gains were also discussed.
基金supported by the National Natural Science Foundation of China(52303051,52202108,52003002)Anhui Provincial Natural Science Foundation(2308085ME146,2008085QE213)+3 种基金Educational Commission of Anhui Province of China(2022AH040137)Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province(ZD04)Opening Fund of China National Textile and Apparel Council Key Laboratory of Flexible Devices for Intelligent Textile and Apparel,Soochow University(SDHY2227)research funding from Anhui Polytechnic University(2020YQQ002,Xjky2022070,FFBK202218,FFBK202363,FFBK202364,2020ffky01).
文摘Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnosis.However,traditional methods,involving elastomer film-based substrates or encapsulation techniques,often fall short due to mechanical mismatches,discomfort,lack of breathability,and limitations in sensing abilities.Consequently,there is a pressing need,yet it remains a significant challenge to create pressure sensors that are not only highly breathable,flexible,and comfortable but also sensitive,durable,and biocompatible.Herein,we present a biocompatible and breathable fabric-based pressure sensor,using nonwoven fabrics as both the sensing electrode(coated with MXene/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate[PEDOT:PSS])and the interdigitated electrode(printed with MXene pattern)via a scalable spray-coating and screen-coating technique.The resultant device exhibits commendable air permeability,biocompatibility,and pressure sensing performance,including a remarkable sensitivity(754.5 kPa^(−1)),rapid response/recovery time(180/110 ms),and robust cycling stability.Furthermore,the integration of PEDOT:PSS plays a crucial role in protecting the MXene nanosheets from oxidation,significantly enhancing the device's long-term durability.These outstanding features make this sensor highly suitable for applications in fullrange human activities detection and disease diagnosis.Our study underscores the promising future of flexible pressure sensors in the realm of intelligent wearable electronics,setting a new benchmark for the industry.
基金the University Malaysia Pahang for the financial aid providing the grants(Nos.RDU 213308 and RDU 192207).
文摘Two-dimensional(2D)MXenes have emerged as an archetypical layered material combining the properties of an organic-inorganic hybrid offering materials sustainability for a range of applications.Their surface functional groups and the associated chemical properties'tailorability through functionalizing MXenes with other materials as well as hydrophilicity and high conductivity enable them to be the best successor for various applications in textile industries,especially in the advancement of smart textiles and remediation of textile wastewater.MXene-based textile composite performs superb smartness in high-performance wearables as well as in the reduction of textile dyes from wastewater.This article critically reviews the significance of MXenes in two sectors of the textile industry.Firstly,we review the improvement of textile raw materials such as fiber,yarn,and fabric by using MXene as electrodes in supercapacitors,pressure sensors.Secondly,we review advancements in the removal of dyes from textile wastewater utilizing MXene as an absorbent by the adsorption process.MXene-based textiles demonstrated superior strength through the strong bonding between MXene and textile structures as well as the treatment of adsorbate by adsorbent(MXene in the adsorption process).We identify critical gaps for further research to enable their real-life applications.
文摘This review explores the evolution of the textile handicraft industry in Saudi Arabia, emphasizing its cultural and economic significance. The study highlights the transition from traditional practices to modern innovations and examines the impact of globalization and technological advancements on the industry. Key innovations are discussed, demonstrating their role in enhancing textile production while preserving cultural heritage. Major challenges, such as competition from industrial textiles and the need for sustainable practices, are identified. Opportunities for growth are explored, including leveraging tourism and international markets to promote Saudi handicrafts. The social and cultural impacts of the sector are underscored, particularly in sustaining community traditions and providing economic opportunities for artisans. Strategic recommendations for supporting and advancing the industry are offered, ensuring its continued relevance and sustainability in a rapidly changing global market. This analysis provides a robust framework for understanding the current state and future potential of Saudi Arabia’s textile handicraft industry.
文摘This paper discusses the use of atmospheric pressure dielectric barrier discharge(DBD)plasma treatment to enhance the surface qualities of viscose fabrics.The study explores the effects of different plasma gases,discharge voltages,and exposure times on the treated fabrics.The findings emphasize the importance of optimizing the plasma's peak voltage to achieve the desired surface treatment outcomes.The document also presents data on colour strength,wettability,colour fastness,and tensile strength of the treated fabrics,as well as scanning electron microscopy(SEM)analysis of surface morphology and chemical analysis using fouriertransition infrared spectroscopy(FTIR)and energy dispersive X-ray(EDX).The results show that treatment at a peak voltage of 11.83 k V is more efficient,except for the tensile strength which is enhanced at a peak voltage of 8.92 k V.The oxygen plasma treatment significantly improves the colour strength,which exhibits an increase from 11 to 18.The intensified colour was attributed to the significant influence of electrostatic interactions between the charged hydroxyl groups of the oxygen plasma treated viscose textiles and the dye molecules,which enhance the printability.The oxygen DBD plasma exhibits a higher ability to enhance the properties of textiles when compared to air and argon plasmas.This study presents a sustainable,economical,secure,and ecologically friendly approach to explore new fabrics for specific uses.
基金Fundamental Research Funds for the Central Universities,China(No.2232021G-03)National Natural Science Foundation of China(Nos.72074132 and 71704165)。
文摘Antifouling textiles have been a hot research field in the last ten years.But lately,the European Union(EU)is expected to ban the production of C6 fluorinated water repellent,oil repellent and antifouling agents from 2025,achieving complete fluoride-free antifouling measures.In the context of the current policy regulations on fluorine-free treatment in the waterproof,oil repellent and antifouling finishing field,this paper conducts a literature survey and comprehensive understanding of the current research status and trend in fluorine-free antifouling finishing.CiteSpace and Carrot2 are used to conduct a literature review of the latest papers in two databases,Web of Science(WoS)and China National Knowledge Infrastructure(CNKI).Firstly,the theoretical evolution and technical characteristics of textiles antifouling finishing technology are systematically discussed,and the technological differences of antifouling finishing textiles for different demands are compared.Secondly,the three main stages of the development of textile antifouling finishing technology and its corresponding finishing methods are summarized.Finally,three paths for the future development of fluorine-free antifouling finishing are prospected:construction of low surface energy,construction of uniform rough surface and low surface energy,and construction of multistage rough surface with low surface energy.To facilitate the transition of the industrial sector to fluorine-free,regulatory restrictions could be strengthened by enhancing the sampling inspection of apparel fabrics,detecting fluorine in wastewater discharges and restricting the production of fluorine-containing finishing agents by manufacturers.
文摘Textile economics is a discipline that uses the basic principles and methods of economics to study textile production,sales and international trade.Learning the course is conducive to training applied senior engineering and technical personnel who understand both technology and management.There are problems such as students have no foundation in economics,students have no enthusiasm for studying textile economics,not enough teachers in textile economics,unreasonable textbook layout,single teaching methods and means,lack of teaching experience,teaching resources and teaching conditions,etc.Therefore,the teaching of textile economics is in urgent need of reform.
基金This work was financially supported by the Opening Project of National Local Joint Laboratory for Advanced Textile Processing and Clean Production(FX2022006)Guiding Project of Natural Science Foundation of Hubei province(2022CFC072)+2 种基金Guiding Project of Scientific Research Plan of Education Department of Hubei Province(B2022081)Shenghong Key Scientific Research Project of Emergency Support and Public Safety Fiber Materials and Products(2022-rw0101)Science and Technology Guidance Program of China National Textile and Apparel Council(2022002).
文摘Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission.A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground.However,it is still a challenge to facilely design and manufacture thermoelectric(TE)textile(TET)-based fire warning electronics with dynamic surface conformability and breathability.Here,we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti_(3)C_(2)T_(x)MXene and p-type MXene/SWCNT-COOH as core materials,and tough aramid nanofiber as protective shell,which simultaneously ensure the flexibility and high-efficiency TE power generation.With such alternating p/n-type TE fibers,TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p-n segment TE fibers into aramid fabric.The results indicate that TET-based fire warning electronics containing 50 p-n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm-2 at a temperature difference of 300℃.The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature.The fire alarm response time and flame-retardant properties are further displayed.Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement,demonstrating their potential application in firefighting clothing.
基金supported by the Fundamental Research Funds for the Central Universities(2232019G-01 and CUSFDH-D-2018026)the Shanghai Natural Science Foundation(20ZR1400500)。
文摘The possibility of printing conductive ink on textiles is progressively researched due to its potential benefits in manufacturing functional wearable electronics and improving wearing comfort.However,few studies have reported the effect of conductive ink formulation on electrodes directly screen-printed on flexible substrates,especially printing UV curable conductive ink on common textiles.In this work,a novel UV curable nano-silver ink with short-time curing and low temperature features was developed to manufacture the fully flexible and washable textile-based electrodes by screen printing.The aim of this study was to determine the influence of ink formulation on UV-curing speed,degree of conversion,morphology and electrical properties of printed electrodes.Besides,the application demonstration was highlighted.The curing speed and adhesion of ink was found depending dominantly on the type of prepolymer and the functionality of monomer,and the type of photoinitiator had a decisive effect on the curing speed,degree of double bond conversion and morphology of printed patterns.The nano-silver content is key to guarantee the suitable screen-printability of conductive ink and therefore the uniformity and high conductivity of textile-based electrodes.Optimally,an ink formulation with 60 wt%nano-silver meets the potential application requirements.The electrode with 1.0 mm width showed significantly high electrical conductivity of 2.47×10^(6)S/m,outstanding mechanical durability and satisfactory washability.The high-performance of electrodes screen-printed on different fabrics proved the feasibility and utility of UV curable nano-silver ink.In addition,the application potential of the conductive ink in fabricating electronic textiles(e-textiles)was confirmed by using the textile-based electrodes as the cathodes of silverzinc batteries.We anticipate the developed UV curable conductive ink for screen-printing on textiles can provide a novel design opportunity for flexible and wearable e-textile applications.
基金Chinese Universities Scientific Fund,National Feature Specialty Construction "Functional Materials",China
文摘Various types of wound debridement approaches are currently available in clinical practice such as autolytie, enzymatic. biodebridement, mechanical, and surgical debridemenl techniques. A critical look at these various options can explain their potential but also their limitations. In this study, a novel textile pad, which is composed of polyester filaments on the fleecy side and a bioeompatible coating on the opposite side, was made to provide a safe, inexpensive, easier and especially more efficient debridement process that can be used in all healthcare settings by all healthcare practitioners. Eighteen kinds of samples were prepared with different pile density, ground yarn count and coating amount. Dimensional morphology, stitch density, mass per unit area and mechanical properties were investigated to study the intrinsic relationship of structure and properties of textile pad for wound debridement. Results showed that tensile strength and suturing strength at piped site increased obviously with the increment of ground yarn count, while the amount of coating could also have a slight impact on these two properties. However, compressive load was mainly affected by pile density, with no obvious relation to ground yarn count and coating amount.
基金supported by the Fundamental Research Funds for the Central Universities under Grant number CUSF-DHD-2018026 and 2232019G-02。
文摘As a critical component for the realization of flexible electronics,multifunctional electronic textiles(etextiles)still struggle to achieve controllable printing accuracy,excellent flexibility,decent washability and simple manufacturing.The printing process of conductive ink plays an important role in manufacturing e-textiles and meanwhile is also the main source of printing defects.In this work,we report the preparation of fully flexible and washable textile-based conductive circuits with screen-printing method based on novel-developed UV-curing conductive ink that contains low temperature and fast cure features.This work systematically investigated the correlation between ink formulation,rheological properties,screen printability on fabric substrates,and the electrical properties of the e-textile made thereafter.The rheological behaviors,including the thixotropic behavior and oscillatory stress sweep of the conductive inks was found depending heavily on the polymer to diluent ratio in the formulation.Subsequently,the rheological response of the inks during screen printing showed determining influence to their printability on textile,that the proper control of ink base viscosity,recovery time and storage/loss modulus is key to ensure the uniformity of printed conductive lines and therefore the electrical conductivity of fabricated e-textiles.A formulation with 24 wt%polymer and 10.8 wt%diluent meets all these stringent requirements.The conductive lines with 1.0 mm width showed exceptionally low resistivity of 2.06×10^(-5)Ωcm Moreover,the conductive lines presented excellent bending tolerance,and there was no significant change in the sample electrical resistance during 10 cycles of washing and drying processes.It is believed that these novel findings and the promising results of the prepared product will provide the basic guideline to the ink formulation design and applications for screen-printing electronics textiles.
基金financial support from the Fundamental Research Funds for the Central Universities(19D110106,19D110112,19D110110)the National Natural Science Foundation of China(No.51603036)+3 种基金Young Elite Scientists Sponsorship Program by CAST(2017QNRC001)the“DHU Distinguished Young Professor Program.”supported by the Initial Research Funds for Young Teachers of Donghua Universitysponsored by Shanghai Sailing Program(19YF1400800)
文摘Human motion analysis consists of real-time monitoring and recording of human body’s kinematics. It is very essential to track ambulatory and dailylife human motion, which is crucial for many applications and disciplines.Electronic textiles(e-textiles) afford a valid alternative to traditional solidstate sensors due to their merits of low cost, lightweight, flexibility, and feasibility to fit various human bodies. In this mini-review, textile-based sensor platforms and human motion analysis are well discussed in Section 1.Second, theoretical principles of textile-based strain sensors are introduced including resistive, capacitive, and piezoelectrical sensors. Section 3 focuses on various types of textile materials that are functionalized as sensing systems by intrinsic or extrinsic modifications. Section 4 summaries various types of e-textile-based strain sensors for human motion analysis. The final two sections mainly present perspectives and challenges, and conclusions,respectively.
文摘In recent years, supply chain management (SCM) has been in popularity as a new management philosophy for all industries, including textile and apparel industries. The textile-apparel supply chain is relatively complex because it encompasses many participants such as yarn manufacturers, fabric manufacturers, garment manufacturers and retailers. Although many scholars are engaged in researching SCM in textile and apparel industries, a systematic classification of textile-apparel chain does not exist. The paper proposes three types of textile-apparel chain, nominated vertical integration chain, traditional sourcing chain and 3P-hub (third party as the hub) chain. Different coordinators exist in different types of chain. Three Hong Kong headquartered companies, Esquel Group, TAL Apparel Ltd., and Li & Fang (Trading) Ltd. are used as cases responding to each type of the structures respectively.