Lake Fuxian is the largest deep freshwater lake in China. Although its average water quality meets Class I of the China National Water Quality Standard (CNWQS), i.e., GB3838-2002, monitoring data indicate that the w...Lake Fuxian is the largest deep freshwater lake in China. Although its average water quality meets Class I of the China National Water Quality Standard (CNWQS), i.e., GB3838-2002, monitoring data indicate that the water quality approaches the Class II threshold in some areas. Thus it is urgent to reduce the watershed load through the total maximum daily load (TMDL) program. A three-dimensional hydrodynamic and water quality model was developed for Lake Fuxian, simulating flow circulation and pollutant fate and transport. The model development process consists of several steps, including grid generation, initial and boundary condition configurations, and model calibration processes. The model accurately reproduced the observed water surface elevation, spatiotemporal variations in temperature, and total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) concentrations, suggesting a reasonable numerical representation of the prototype system for further TMDL analyses. The TMDL was calculated using two interpretations of the water quality standards for Class I of the CNWQS based on the maximum instantaneous surface and annual average surface water concentrations. Analysis of the first scenario indicated that the TN, TP and COD loads should be reduced by 66%, 68% and 57%, respectively. Water quality was the highest priority; however, local economic development and cost feasibility for load reduction can pose significant issues. In the second interpretation, the model results showed that, under the existing conditions, the average water quality meets the Class I standard and therefore load reduction is unnecessary. Future studies are needed to conduct risk and cost assessments for realistic decision-making.展开更多
Immediately following a spill at sea, released oil ranging from diesel to light crude and diluted bitumen, will initially weather through evaporation, resulting in an elevated concentration of light hydrocarbons in th...Immediately following a spill at sea, released oil ranging from diesel to light crude and diluted bitumen, will initially weather through evaporation, resulting in an elevated concentration of light hydrocarbons in the air. As part of oil spill response operations, first responders use hand-held devices to monitor airborne concent- rations when approaching a spill. The feasibility of using numerical modelling as an additional tool to assess potential flammability and plan response operations in the spill area was explored in this study. The Lower Explosive Limit (LEL) is defined as the minimum concentration of a gas in air, in this case a mixture of evaporated hydrocarbons, which can produce a flash fire in the presence of an ignition source. This ignition source could be triggered by the vessel itself or by spill response operations. A framework was put into place, utilizing a three- dimensional hydrodynamic model (H3D), an oil spill model (SPILLCALC), and an air dispersion model (CALPUFF) to assess the risk of possible ignition of the hydrocarbon vapour in the event of a spill. The study looked at a hypothetical credible worst case tanker spill (16 500 m3) of diluted bitumen (cold lake winter blend) occurring at Arachne Reef in Haro Strait, British Columbia, Canada. SPILLCALC provided one-minute averaged vapour fluxes from the water surface for each of 17 modelled pseudo-components which were used as inputs to CALPUFF. Using the predicted airborne concentrations of each pseudo-component, time-scaled to one-second averages, the flammability potential in the immediate spill area was determined at each grid point using Le Chatelier’s mixing equation. The approach describe here was developed as a proof of concept, and could be established as a real-time system, bringing valuable information in addition to hand-held devices during a spill response, or during a response exercise. This modelling study was conducted as part of Kinder Morgan’s Trans Mountain Pipeline Expansion Project. There are a number of commercially available oil spill models but few if any are equipped with the ability to model air dispersion and forecast hazardous conditions as discussed in this paper.展开更多
Multi-objective optimization linked with an urban stormwater model is used in this study to identify cost-effective low impact development (LID) implementation designs for small urbanizing watersheds. The epsilon-Non-...Multi-objective optimization linked with an urban stormwater model is used in this study to identify cost-effective low impact development (LID) implementation designs for small urbanizing watersheds. The epsilon-Non-Dominated Sorting Genetic Algorithm II (ε-NSGAII) has been coupled with the US Environmental Protection Agency’s Stormwater Management Model (SWMM) to balance the costs and the hydrologic benefits of candidate LID solutions. Our objective in this study is to identify the near-optimal tradeoff between the total LID costs and the total watershed runoff volume constrained by pre-development peak flow rates. This study contributes a detailed analysis of the costs and benefits associated with the use of green roofs, porous pavement, and bioretention basins within a small urbanizing watershed inState College,Pennsylvania. Beyond multi-objective analysis, this paper also contributes improved SWMM representations of LID alternatives and demonstrates their usefulness for screening alternative site layouts for LID technologies.展开更多
基金supported by the National Natural Science Foundation of China (No. 41101180)the China National Water Pollution Control Program (No.2010ZX07102-006)
文摘Lake Fuxian is the largest deep freshwater lake in China. Although its average water quality meets Class I of the China National Water Quality Standard (CNWQS), i.e., GB3838-2002, monitoring data indicate that the water quality approaches the Class II threshold in some areas. Thus it is urgent to reduce the watershed load through the total maximum daily load (TMDL) program. A three-dimensional hydrodynamic and water quality model was developed for Lake Fuxian, simulating flow circulation and pollutant fate and transport. The model development process consists of several steps, including grid generation, initial and boundary condition configurations, and model calibration processes. The model accurately reproduced the observed water surface elevation, spatiotemporal variations in temperature, and total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) concentrations, suggesting a reasonable numerical representation of the prototype system for further TMDL analyses. The TMDL was calculated using two interpretations of the water quality standards for Class I of the CNWQS based on the maximum instantaneous surface and annual average surface water concentrations. Analysis of the first scenario indicated that the TN, TP and COD loads should be reduced by 66%, 68% and 57%, respectively. Water quality was the highest priority; however, local economic development and cost feasibility for load reduction can pose significant issues. In the second interpretation, the model results showed that, under the existing conditions, the average water quality meets the Class I standard and therefore load reduction is unnecessary. Future studies are needed to conduct risk and cost assessments for realistic decision-making.
文摘Immediately following a spill at sea, released oil ranging from diesel to light crude and diluted bitumen, will initially weather through evaporation, resulting in an elevated concentration of light hydrocarbons in the air. As part of oil spill response operations, first responders use hand-held devices to monitor airborne concent- rations when approaching a spill. The feasibility of using numerical modelling as an additional tool to assess potential flammability and plan response operations in the spill area was explored in this study. The Lower Explosive Limit (LEL) is defined as the minimum concentration of a gas in air, in this case a mixture of evaporated hydrocarbons, which can produce a flash fire in the presence of an ignition source. This ignition source could be triggered by the vessel itself or by spill response operations. A framework was put into place, utilizing a three- dimensional hydrodynamic model (H3D), an oil spill model (SPILLCALC), and an air dispersion model (CALPUFF) to assess the risk of possible ignition of the hydrocarbon vapour in the event of a spill. The study looked at a hypothetical credible worst case tanker spill (16 500 m3) of diluted bitumen (cold lake winter blend) occurring at Arachne Reef in Haro Strait, British Columbia, Canada. SPILLCALC provided one-minute averaged vapour fluxes from the water surface for each of 17 modelled pseudo-components which were used as inputs to CALPUFF. Using the predicted airborne concentrations of each pseudo-component, time-scaled to one-second averages, the flammability potential in the immediate spill area was determined at each grid point using Le Chatelier’s mixing equation. The approach describe here was developed as a proof of concept, and could be established as a real-time system, bringing valuable information in addition to hand-held devices during a spill response, or during a response exercise. This modelling study was conducted as part of Kinder Morgan’s Trans Mountain Pipeline Expansion Project. There are a number of commercially available oil spill models but few if any are equipped with the ability to model air dispersion and forecast hazardous conditions as discussed in this paper.
文摘Multi-objective optimization linked with an urban stormwater model is used in this study to identify cost-effective low impact development (LID) implementation designs for small urbanizing watersheds. The epsilon-Non-Dominated Sorting Genetic Algorithm II (ε-NSGAII) has been coupled with the US Environmental Protection Agency’s Stormwater Management Model (SWMM) to balance the costs and the hydrologic benefits of candidate LID solutions. Our objective in this study is to identify the near-optimal tradeoff between the total LID costs and the total watershed runoff volume constrained by pre-development peak flow rates. This study contributes a detailed analysis of the costs and benefits associated with the use of green roofs, porous pavement, and bioretention basins within a small urbanizing watershed inState College,Pennsylvania. Beyond multi-objective analysis, this paper also contributes improved SWMM representations of LID alternatives and demonstrates their usefulness for screening alternative site layouts for LID technologies.