In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for peo...In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for people’s production and life,require high attention from industry insiders in terms of their energy efficiency testing.Relying on energy efficiency testing can achieve the goal of energy conservation and emission reduction,and related quality control technologies will also inject new momentum into the green development of the industry.This article will discuss the practical strategies of quality control technology for energy efficiency testing of electronic and electrical products based on the significance of such testing,hoping to provide some help.展开更多
The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analys...The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.展开更多
Segregation of solute atoms in the center of thick plates of the tempered steel can cause an inhomogeneous structural transformation and generate micron-sized inclusions,which leads to lamellar tearing of thick plate ...Segregation of solute atoms in the center of thick plates of the tempered steel can cause an inhomogeneous structural transformation and generate micron-sized inclusions,which leads to lamellar tearing of thick plate and decreases the plasticity and toughness.The formation and fragmentation mechanisms of micron-sized inclusions,like MnS and(Nb,Ti)C,in the center of thick plates were investigated by using thermodynamic calculations,finite element simulations,and electron backscatter diffraction characterization techniques.The results show that micron-sized inclusions nucleate and grow in the liquid phase,and under tensile loading,they exhibit three fragmentation mechanisms.The local stress during the fragmentation of inclusions is lower than the critical fracture stress of adjacent grains,and phase boundaries can effectively impede crack propagation into the matrix.The existence of a low proportion of high-angle grain boundaries(58.1%)and high Kernel average misorientation value(0.534°)in the segregation band promotes inclusions fragmentation and crack propagation.The difference in crack initiation and propagation direction caused by the morphology of inclusions and physical properties,as well as different matrix arrest abilities,is the main reasons for the diversity of inclusion fragmentation.展开更多
This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and d...This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and dynamic load inspections and safety assessments.After conducting these tests,it was concluded that the structure of the old bridge is relatively safe,with only a few bumps.The bridge could function normally following appropriate treatment.The analysis provides valuable insights into the assessment of the quality and safety of such bridges to ensure the safe driving of heavy vehicles.展开更多
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load...This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.展开更多
This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview ...This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.展开更多
Highway bridges are a crucial component in road transportation networks.These bridges must be maintained according to usage requirements regularly.Test results must be considered before devising a maintenance plan.Loa...Highway bridges are a crucial component in road transportation networks.These bridges must be maintained according to usage requirements regularly.Test results must be considered before devising a maintenance plan.Load testing is a vital method of assessing the quality and performance of highway bridges.The outcomes of these tests facilitate the formulation of maintenance plans.This article examines the definition of load testing,its significance,and the process of execution,with the goal of providing support for bridge inspection and maintenance.展开更多
To study the volatile organic compounds(VOCs)emission characteristics of industrial enterprises in China,6 typical chemical industries in Yuncheng City were selected as research objects,including the modern coal chemi...To study the volatile organic compounds(VOCs)emission characteristics of industrial enterprises in China,6 typical chemical industries in Yuncheng City were selected as research objects,including the modern coal chemical industry(MCC),pharmaceutical industry(PM),pesticide industry(PE),coking industry(CO)and organic chemical industry(OC).The chemical composition of 91 VOCs was quantitatively analyzed.The results showed that the emission concentration of VOCs in the chemical industry ranged from 1.16 to 155.59 mg/m^(3).Alkanes were the main emission components of MCC(62.0%),PE(55.1%),and OC(58.5%).Alkenes(46.5%)were important components of PM,followed by alkanes(23.8%)and oxygenated volatile organic compounds(OVOCs)(21.2%).Halocarbons(8.6%-71.1%),OVOCs(9.7%-37.6%)and alkanes(11.2%-27.0%)were characteristic components of CO.The largest contributor to OFP was alkenes(0.6%-81.7%),followed by alkanes(9.3%-45.9%),and the lowest onewas alkyne(0%-0.5%).Aromatics(66.9%-85.4%)were the largest contributing components to SOA generation,followed by alkanes(2.6%-28.5%),and the lowest one was alkenes(0%-4.1%).Ethylene and BTEX were the key active species in various chemical industries.The human health risk assessment showed workers long-term exposed to the air in the chemical industrial zone had a high cancer and non-cancer risk during work,and BTEX and dichloromethane were the largest contributors.展开更多
This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated...This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders.展开更多
The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of ...The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.展开更多
In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope...In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.展开更多
Secondary injury following spinal cord injury is primarily characterized by a complex inflammatory response,with resident microglia and infiltrating macrophages playing pivotal roles.While previous studies have groupe...Secondary injury following spinal cord injury is primarily characterized by a complex inflammatory response,with resident microglia and infiltrating macrophages playing pivotal roles.While previous studies have grouped these two cell types together based on similarities in structure and function,an increasing number of studies have demonstrated that microglia and macrophages exhibit differences in structure and function and have different effects on disease processes.In this study,we used single-cell RNA sequencing and spatial transcriptomics to identify the distinct evolutionary paths of microglia and macrophages following spinal cord injury.Our results showed that microglia were activated to a pro-inflammatory phenotype immediately after spinal cord injury,gradually transforming to an anti-inflammatory steady state phenotype as the disease progressed.Regarding macrophages,our findings highlighted abundant communication with other cells,including fibroblasts and neurons.Both pro-inflammatory and neuroprotective effects of macrophages were also identified;the pro-inflammatory effect may be related to integrin β2(Itgb2) and the neuroprotective effect may be related to the oncostatin M pathway.These findings were validated by in vivo experiments.This research underscores differences in the cellular dynamics of microglia and macrophages following spinal cord injury,and may offer new perspectives on inflammatory mechanisms and potential therapeutic targets.展开更多
Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In t...Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In this study,a flake-like nickel cobaltate/re-duced graphene oxide/melamine-derived carbon foam(FNC/RGO/MDCF)was successfully fabricated through a combination of solvo-thermal treatment and high-temperature pyrolysis.Results indicated that RGO was evenly distributed in the MDCF skeleton,providing ef-fective support for the load growth of FNC on its surface.Sample S3,the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h,exhibited a minimum reflection loss(RL_(min))of-66.44 dB at a thickness of 2.29 mm.When the thickness was reduced to 1.50 mm,the optimal effective absorption bandwidth was 3.84 GHz.Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss,multiple reflection,scattering,in-terface polarization,and dipole polarization.展开更多
4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to b...4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.展开更多
Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or C...Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.展开更多
Monitoring adverse drug reactions(ADRs)in primary medical institutions is crucial to ensuring medication safety.Currently,this work faces difficulties such as insufficient professional ability of staff,imperfect monit...Monitoring adverse drug reactions(ADRs)in primary medical institutions is crucial to ensuring medication safety.Currently,this work faces difficulties such as insufficient professional ability of staff,imperfect monitoring systems,and low patient awareness.It is necessary to improve the level of ADR monitoring at the grassroots level and ensure the safety and effectiveness of medication through countermeasures such as strengthening personnel training,optimizing monitoring processes,and raising public awareness.展开更多
EMC anechoic chamber is used for radiation emission and radiation immunity test,and the wireless performance of products needs to be tested in OTA anechoic chamber.With more and more electronic and electrical equipmen...EMC anechoic chamber is used for radiation emission and radiation immunity test,and the wireless performance of products needs to be tested in OTA anechoic chamber.With more and more electronic and electrical equipment with wireless communication function,the rapid construction of a compatible OTA test system in the existing EMC anechoic chamber can save the cost and space of enterprises and third-party laboratories that already have EMC anechoic chamber.In this paper,the OTA test system is built in the existing EMC anechoic room,the ripple calibration test is carried out according to the OTA standard,the TRP and TIS tests are carried out on two test samples with different wireless communication standards,and the test samples are taken to the OTA anechoic room for a comparison test.The comparison between the ripple calibration data and the OTA test data showed that the EMC anechoic chamber could perform OTA test without affecting the original test ability.The data results provide a basis for the implementation of EMC anechoic chamber compatibility upgrade OTA test,and provide reference for further optimization of the compatible test system,reduction of test differences,and the design of anechoic chamber integrating two test functions.展开更多
Newly built tunnels often encounter a series of defects within the first few years of operation.If not promptly addressed and reinforced,these defects threaten the tunnel's durability and stability and bring sever...Newly built tunnels often encounter a series of defects within the first few years of operation.If not promptly addressed and reinforced,these defects threaten the tunnel's durability and stability and bring severe challenges to its safe operation.This study aims to explore reinforcement techniques for addressing defects in newly built tunnels.The research begins with an analysis of common defects found in newly built tunnels,followed by a case study of the Jinfeng Tunnel in Chongqing,examining the post-construction defects.The actual reinforcement strategies and methods employed for the tunnel are then discussed.Finally,based on the research findings,this study provides insights and references for tunnel operation and construction units in China,aiming to enhance the overall quality of tunnel engineering in the country,align with sustainable development goals,and promote further improvements at a macro level.展开更多
A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regiosel...A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regioselective access to unprecedented polyarene-fused ten-membered lactams bearing a bridged aryl-aryl-indole scaffold in moderate to good yields.This protocol demonstrates a broad substrate scope,good compatibility with substituents and complete regioselectivity,providing an organocatalytic modular synthetic strategy for creating medium-sized lactams.展开更多
[Objectives]This study was conducted to investigate the influence mechanisms of microbial succession in raw milk under cold storage at different temperatures.[Methods]A raw milk sample was collected from a local large...[Objectives]This study was conducted to investigate the influence mechanisms of microbial succession in raw milk under cold storage at different temperatures.[Methods]A raw milk sample was collected from a local large-scale farm in Tangshan and divided into four treatment gradients:a control group(M)rapidly frozen at-80℃,and three experimental groups stored at 4℃(T),6℃(F),and 8℃(Y),respectively.A time series experiment was carried out according to time intervals of 24,48 and 72 h in each experimental group.Traditional microbial culture methods and 16S rRNA high-throughput sequencing were combined to analyze the dynamic changes in microbial abundance and structural variation.[Results]Plate counting revealed significantly lower total bacterial count and psychrotrophic bacteria in the 4℃storage group within 24 h compared with other treatment groups(P<0.01),confirming that maintaining low-temperature cold chain integrity and controlling treatment time(<24 h)can effectively inhibit microbial metabolic activity.16S rRNA sequencing analysis revealed high initial microbial diversity in raw milk,with dominant genera being Lactococcus,Acinetobacter,and Pseudomonas.Low-temperature treatment effectively reduced theαdiversity index of the microbial community.During the later stage of cold storage at 4℃,the relative abundance of Pseudomonas increased to over 90%,making it the dominant bacterial genus.[Conclusions]This study has significant application value for maintaining the quality of milk and dairy products and prolonging their shelf life.展开更多
文摘In the current social environment,the importance of energy conservation and emission reduction is increasing day by day for both the country and its people.Electronic and electrical products,as important items for people’s production and life,require high attention from industry insiders in terms of their energy efficiency testing.Relying on energy efficiency testing can achieve the goal of energy conservation and emission reduction,and related quality control technologies will also inject new momentum into the green development of the industry.This article will discuss the practical strategies of quality control technology for energy efficiency testing of electronic and electrical products based on the significance of such testing,hoping to provide some help.
文摘The purpose of this study is to analyze the application of ultrasonic non-destructive testing technology in bridge engineering.During the research phase,based on literature collection and reading,as well as the analysis of bridge inspection materials,the principle of ultrasonic non-destructive testing technology and its adaptability to bridge engineering are elaborated.Subsequently,starting from the preparation work before inspection until damage assessment,the entire process of ultrasonic non-destructive testing is studied,and finally,a technical system of ultrasonic non-destructive testing for bridge engineering that runs through the entire process is formed.It is hoped that this article can provide technical reference value for relevant units in China,and promote the high-quality development of China’s bridge engineering from a macro perspective.
基金the financial support to the National Natural Science Foundation of China(U20A20279)the technical support provided by Analysis and Test Center of Wuhan University of Science and Technology,China.
文摘Segregation of solute atoms in the center of thick plates of the tempered steel can cause an inhomogeneous structural transformation and generate micron-sized inclusions,which leads to lamellar tearing of thick plate and decreases the plasticity and toughness.The formation and fragmentation mechanisms of micron-sized inclusions,like MnS and(Nb,Ti)C,in the center of thick plates were investigated by using thermodynamic calculations,finite element simulations,and electron backscatter diffraction characterization techniques.The results show that micron-sized inclusions nucleate and grow in the liquid phase,and under tensile loading,they exhibit three fragmentation mechanisms.The local stress during the fragmentation of inclusions is lower than the critical fracture stress of adjacent grains,and phase boundaries can effectively impede crack propagation into the matrix.The existence of a low proportion of high-angle grain boundaries(58.1%)and high Kernel average misorientation value(0.534°)in the segregation band promotes inclusions fragmentation and crack propagation.The difference in crack initiation and propagation direction caused by the morphology of inclusions and physical properties,as well as different matrix arrest abilities,is the main reasons for the diversity of inclusion fragmentation.
文摘This article presents a real-life project that aimed to evaluate the safety of traffic vehicles on old bridges without any prior data.The project involved various safety inspections,including conventional,static,and dynamic load inspections and safety assessments.After conducting these tests,it was concluded that the structure of the old bridge is relatively safe,with only a few bumps.The bridge could function normally following appropriate treatment.The analysis provides valuable insights into the assessment of the quality and safety of such bridges to ensure the safe driving of heavy vehicles.
文摘This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity.
文摘This article takes the actual construction project of a certain concrete bridge project as an example to analyze the application of acoustic non-destructive testing technology in its detection.It includes an overview of a certain bridge construction project studied and acoustic non-destructive testing technology and the application of acoustic non-destructive testing technology in actual testing.This analysis hopes to provide some guidelines for acoustic non-destructive testing of modern concrete bridge projects.
文摘Highway bridges are a crucial component in road transportation networks.These bridges must be maintained according to usage requirements regularly.Test results must be considered before devising a maintenance plan.Load testing is a vital method of assessing the quality and performance of highway bridges.The outcomes of these tests facilitate the formulation of maintenance plans.This article examines the definition of load testing,its significance,and the process of execution,with the goal of providing support for bridge inspection and maintenance.
基金supported by the National Natural Science Foundation of China(No.41905108)the National Research Program for Key Issues in Air Pollution Control(No.DQ GG0532).
文摘To study the volatile organic compounds(VOCs)emission characteristics of industrial enterprises in China,6 typical chemical industries in Yuncheng City were selected as research objects,including the modern coal chemical industry(MCC),pharmaceutical industry(PM),pesticide industry(PE),coking industry(CO)and organic chemical industry(OC).The chemical composition of 91 VOCs was quantitatively analyzed.The results showed that the emission concentration of VOCs in the chemical industry ranged from 1.16 to 155.59 mg/m^(3).Alkanes were the main emission components of MCC(62.0%),PE(55.1%),and OC(58.5%).Alkenes(46.5%)were important components of PM,followed by alkanes(23.8%)and oxygenated volatile organic compounds(OVOCs)(21.2%).Halocarbons(8.6%-71.1%),OVOCs(9.7%-37.6%)and alkanes(11.2%-27.0%)were characteristic components of CO.The largest contributor to OFP was alkenes(0.6%-81.7%),followed by alkanes(9.3%-45.9%),and the lowest onewas alkyne(0%-0.5%).Aromatics(66.9%-85.4%)were the largest contributing components to SOA generation,followed by alkanes(2.6%-28.5%),and the lowest one was alkenes(0%-4.1%).Ethylene and BTEX were the key active species in various chemical industries.The human health risk assessment showed workers long-term exposed to the air in the chemical industrial zone had a high cancer and non-cancer risk during work,and BTEX and dichloromethane were the largest contributors.
基金The National Natural Science Foundation of China(Grant#52278161)the Science and Technology Project of Guangzhou(Grant#2024A04J9888)the Guangdong Basic and Applied Basic Research Foundation(Grant#2023A1515010535).
文摘This study investigates the flexural performance of ultra-high performance concrete(UHPC)in reinforced concrete T-beams,focusing on the effects of interfacial treatments.Three concrete T-beam specimens were fabricated and tested:a control beam(RC-T),a UHPC-reinforced beam with a chiseled interface(UN-C-50F),and a UHPC-reinforced beam featuring both a chiseled interface and anchored steel rebars(UN-CS-50F).The test results indicated that both chiseling and the incorporation of anchored rebars effectively created a synergistic combination between the concrete T-beam and the UHPC reinforcement layer,with the UN-CS-50F exhibiting the highest flexural resistance.The cracking load and ultimate load of UN-CS-50F were 221.5%and 40.8%,respectively,higher than those of the RC-T.Finite element(FE)models were developed to provide further insights into the behavior of the UHPCreinforced T-beams,showing a maximumdeviation of just 8%when validated against experimental data.A parametric analysis varied the height,thickness,andmaterial strength of the UHPC reinforcement layer based on the validated FE model,revealing that increasing the UHPC layer thickness from 30 to 50 mm improved the ultimate resistance by 20%while reducing the UHPC reinforcement height from 440 to 300 mm led to a 10%decrease in bending resistance.The interfacial anchoring rebars significantly reduced crack propagation and enhanced stress redistribution,highlighting the importance of strengthening interfacial bonds and optimizing geometric parameters ofUHPCfor improved T-beam performance.These findings offer valuable insights for the design and retrofitting of UHPC-reinforced bridge girders.
基金supported by the National Natural Science Foundation of China(No.52374372)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB430042)+3 种基金the Jiangsu Province Large Scientific Instruments Open Sharing Autonomous Research Filing Project,China(No.TC2023A037)the Yangzhou City−Yangzhou University Cooperation Foundation,China(No.YZ2022183)High-end Talent Support Program of Yangzhou University,China,Qinglan Project of Yangzhou University,ChinaLvyangjinfeng Talent program of Yangzhou,China.
文摘The interdiffusion coefficients in Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys were efficiently determined by combining diffusion couple experiments and high-throughput determination of interdiffusion coefficients(HitDIC)software at 1273−1373 K.The results show that the addition of Al,Cu,and Mn to CoCrFeNi high-entropy alloys promotes the diffusion of Co,Cr,and Fe atoms.The comparison of tracer diffusion coefficients indicates that there is no sluggish diffusion in tracer diffusion on the thermodynamic temperature scale for the present Al_(0.2)CoCrFeNi,CoCrCu_(0.2)FeNi,and CoCrFeMn_(0.2)Ni high-entropy alloys.The linear relationship between diffusion entropy and activation energy reveals that the diffusion process of atoms is unaffected by an increase in the number of components as long as the crystal structure remains unchanged.
基金supported by the National Natural Science Foundation of China(Nos.42171108 and 42101136)Sichuan Science and Technology Program(Nos.2024NSFSC2007 and2025YFHZ0273)Natural Science Starting Project of SWPU(No.2024QHZ029)。
文摘In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.
文摘Secondary injury following spinal cord injury is primarily characterized by a complex inflammatory response,with resident microglia and infiltrating macrophages playing pivotal roles.While previous studies have grouped these two cell types together based on similarities in structure and function,an increasing number of studies have demonstrated that microglia and macrophages exhibit differences in structure and function and have different effects on disease processes.In this study,we used single-cell RNA sequencing and spatial transcriptomics to identify the distinct evolutionary paths of microglia and macrophages following spinal cord injury.Our results showed that microglia were activated to a pro-inflammatory phenotype immediately after spinal cord injury,gradually transforming to an anti-inflammatory steady state phenotype as the disease progressed.Regarding macrophages,our findings highlighted abundant communication with other cells,including fibroblasts and neurons.Both pro-inflammatory and neuroprotective effects of macrophages were also identified;the pro-inflammatory effect may be related to integrin β2(Itgb2) and the neuroprotective effect may be related to the oncostatin M pathway.These findings were validated by in vivo experiments.This research underscores differences in the cellular dynamics of microglia and macrophages following spinal cord injury,and may offer new perspectives on inflammatory mechanisms and potential therapeutic targets.
基金support of the Key Science Research Project in Colleges and Universities of Anhui Province,China(No.2022AH050813)the Medical Special Cultivation Project of Anhui University of Science and Technology,China(No.YZ2023H2A002).
文摘Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In this study,a flake-like nickel cobaltate/re-duced graphene oxide/melamine-derived carbon foam(FNC/RGO/MDCF)was successfully fabricated through a combination of solvo-thermal treatment and high-temperature pyrolysis.Results indicated that RGO was evenly distributed in the MDCF skeleton,providing ef-fective support for the load growth of FNC on its surface.Sample S3,the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h,exhibited a minimum reflection loss(RL_(min))of-66.44 dB at a thickness of 2.29 mm.When the thickness was reduced to 1.50 mm,the optimal effective absorption bandwidth was 3.84 GHz.Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss,multiple reflection,scattering,in-terface polarization,and dipole polarization.
文摘4-Nonylphenol(NP)is a kind of estrogen belonging to the endocrine disrupter,widely used in various agricultural and industrial goods.However,extensive use of NP with direct release to environment poses high risks to both human health and ecosystems.Herein,for the first time,we developed near-infrared(NIR)responsive upconversion luminescence nanosensor for NP detection.The Förster resonance energy transfer based upconversion nanoparticles(UCNPs)-graphene oxide sensor offers highly selective and sensitive detection of NP in linear ranges of 5−200 ng/mL and 200−1000 ng/mL under 980 nm and 808 nm excitation,respectively,with LOD at 4.2 ng/mL.The sensors were successfully tested for NP detection in real liquid milk samples with excellent recovery results.The rare-earth fluoride based upconversion luminescence nanosensor with NIR excitation wavelength,holds promise for sensing food,environmental,and biological samples due to their high sensitivity,specific recognition,low LOD,negligible autofluorescence,along with the deep penetration of NIR excitation sources.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U2340219)。
文摘Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.
文摘Monitoring adverse drug reactions(ADRs)in primary medical institutions is crucial to ensuring medication safety.Currently,this work faces difficulties such as insufficient professional ability of staff,imperfect monitoring systems,and low patient awareness.It is necessary to improve the level of ADR monitoring at the grassroots level and ensure the safety and effectiveness of medication through countermeasures such as strengthening personnel training,optimizing monitoring processes,and raising public awareness.
基金Yancheng Science and Technology Bureau(YCBK2023027)。
文摘EMC anechoic chamber is used for radiation emission and radiation immunity test,and the wireless performance of products needs to be tested in OTA anechoic chamber.With more and more electronic and electrical equipment with wireless communication function,the rapid construction of a compatible OTA test system in the existing EMC anechoic chamber can save the cost and space of enterprises and third-party laboratories that already have EMC anechoic chamber.In this paper,the OTA test system is built in the existing EMC anechoic room,the ripple calibration test is carried out according to the OTA standard,the TRP and TIS tests are carried out on two test samples with different wireless communication standards,and the test samples are taken to the OTA anechoic room for a comparison test.The comparison between the ripple calibration data and the OTA test data showed that the EMC anechoic chamber could perform OTA test without affecting the original test ability.The data results provide a basis for the implementation of EMC anechoic chamber compatibility upgrade OTA test,and provide reference for further optimization of the compatible test system,reduction of test differences,and the design of anechoic chamber integrating two test functions.
文摘Newly built tunnels often encounter a series of defects within the first few years of operation.If not promptly addressed and reinforced,these defects threaten the tunnel's durability and stability and bring severe challenges to its safe operation.This study aims to explore reinforcement techniques for addressing defects in newly built tunnels.The research begins with an analysis of common defects found in newly built tunnels,followed by a case study of the Jinfeng Tunnel in Chongqing,examining the post-construction defects.The actual reinforcement strategies and methods employed for the tunnel are then discussed.Finally,based on the research findings,this study provides insights and references for tunnel operation and construction units in China,aiming to enhance the overall quality of tunnel engineering in the country,align with sustainable development goals,and promote further improvements at a macro level.
基金National Natural Science Foundation of China(Nos.21971090 and 22271123)the NSF of Jiangsu Province(No.BK20230201)+1 种基金the Natural Science Foundation of Jiangsu Education Committee(No.22KJB150024)the Natural Science Foundation of Jiangsu Normal University(No.21XSRX010)。
文摘A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regioselective access to unprecedented polyarene-fused ten-membered lactams bearing a bridged aryl-aryl-indole scaffold in moderate to good yields.This protocol demonstrates a broad substrate scope,good compatibility with substituents and complete regioselectivity,providing an organocatalytic modular synthetic strategy for creating medium-sized lactams.
基金Supported by Tangshan Talent Funding Project(A202202005)Dairy Industry Revitalization Major Technological Innovation Project of Hebei Key Research and Development Program(19227516D)High-level Talents Funding Project of Hebei Province(A201803034).
文摘[Objectives]This study was conducted to investigate the influence mechanisms of microbial succession in raw milk under cold storage at different temperatures.[Methods]A raw milk sample was collected from a local large-scale farm in Tangshan and divided into four treatment gradients:a control group(M)rapidly frozen at-80℃,and three experimental groups stored at 4℃(T),6℃(F),and 8℃(Y),respectively.A time series experiment was carried out according to time intervals of 24,48 and 72 h in each experimental group.Traditional microbial culture methods and 16S rRNA high-throughput sequencing were combined to analyze the dynamic changes in microbial abundance and structural variation.[Results]Plate counting revealed significantly lower total bacterial count and psychrotrophic bacteria in the 4℃storage group within 24 h compared with other treatment groups(P<0.01),confirming that maintaining low-temperature cold chain integrity and controlling treatment time(<24 h)can effectively inhibit microbial metabolic activity.16S rRNA sequencing analysis revealed high initial microbial diversity in raw milk,with dominant genera being Lactococcus,Acinetobacter,and Pseudomonas.Low-temperature treatment effectively reduced theαdiversity index of the microbial community.During the later stage of cold storage at 4℃,the relative abundance of Pseudomonas increased to over 90%,making it the dominant bacterial genus.[Conclusions]This study has significant application value for maintaining the quality of milk and dairy products and prolonging their shelf life.