Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institut...Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.展开更多
This paper systematically analyzed the development status of sheep industry in Lubei region,and comprehensively expounded the scale and distribution of key industries,breed resources and genetic characteristics,feedin...This paper systematically analyzed the development status of sheep industry in Lubei region,and comprehensively expounded the scale and distribution of key industries,breed resources and genetic characteristics,feeding management status,disease prevention and control and veterinary services,and sheep product processing and sales.The research shows that the sheep industry in Lubei region has formed a certain scale,but there are some problems such as intensified resource and environmental constraints,unreasonable industrial structure,insufficient scientific and technological innovation capacity and market competitiveness to be improved.In view of these problems,this paper put forward some countermeasures and suggestions to promote the high-quality development of the industry,including establishing forage and feed system,promoting the adjustment and optimization of industrial structure,strengthening scientific and technological innovation and talent cultivation and introduction,and enhancing brand influence and market competitiveness,providing useful reference for the sustainable development of sheep industry in Lubei region.展开更多
In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more ob...In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more obvious. Piezoelectric energy collector has attracted wide attention because of its simple structure, no heating, no electromagnetic interference, environmental protection and easy miniaturization. Wind energy is a reproducible resource. Wind energy harvester based on piezoelectric intelligent material can be named piezoelectric wind energy harvesting which converts wind energy into electric power and will have great application prospect. To promote the development of piezoelectric wind energy harvesting technology, research statuses on piezoelectric wind energy harvesting technology are reviewed. The existing problem and development direction about piezoelectric wind energy harvester in the future are discussed. The study will be helpful for researchers engaged in piezoelectric wind energy harvesting.展开更多
Our database tracking of USA water usage per well indicates that traditionally shale operators have been using, on average 3 to 6 million gallons of water; even up to 8 million for the en- tire life cycle of the well ...Our database tracking of USA water usage per well indicates that traditionally shale operators have been using, on average 3 to 6 million gallons of water; even up to 8 million for the en- tire life cycle of the well based on its suitability for re-fracturing to stimulate their long and lateral ho- rizontal welis. According to our data, sourcing, storage, transportation, treatment, and disposal of this large volume of water could account for up to 10% of overall drilling and completion costs. With in- creasingly stringent regulations governing the use of fresh water and growing challenges associated with storage and use of produced and flowback water in hydraulic fracturing, finding alternative sources of fracturing fluid is already a hot debate among both the scientific community and industry experts. On the other hand, waterless fracturing technology providers claim their technology can solve the concerns of water availability for shale development. This study reviews high-level technical issues and opportunities in this challenging and growing market and evaluates key economic drivers behind water management practices such as waterless fracturing technologies, based on a given shale gas play in the United States and experience gained in Canada. Water costs are analyzed under a variety of scenarios with and without the use of (fresh) water. The results are complemented by surveys from several oil and gas operators. Our economic analysis shows that fresh water usage offers the greatest economic return. In regions where water sourcing is a challenge, however, the short-term economic advantage of using non-fresh water-based fracturing outweighs the capital costs required by waterless fracturing methods. Until waterless methods are cost competitive, recycled water usage with low treatment offers a similar net present value (NPV) to that of sourcing freshwater via truck, for in- stance.展开更多
Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive anal...Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.展开更多
Since 1990s, due to the development of petroleum exploration technology, petroleum machinery and equipment have been addressed by all nations. By means of heavier investment on technology innovation, adopting advanced...Since 1990s, due to the development of petroleum exploration technology, petroleum machinery and equipment have been addressed by all nations. By means of heavier investment on technology innovation, adopting advanced technology to develop new equipments by big oil companies, the overall levels of adaptability, reliability, diversity, sedation, integrity, automatization, intelligence are highly improved. In recent years, the technology of exploration and development for oil and gas in China has expanded rapidly, while the technique of drilling and production is approaching world level. As the drilling engineering orients to the directional well, ultra-deep well and complex well, the research and development of downhole tools to match the technique has shown its importance.展开更多
Purpose–High-speed maglev technology can address the issues of adhesion,friction,vibration and highspeed current collection in traditional wheel-rail systems,making it an important direction for the future developmen...Purpose–High-speed maglev technology can address the issues of adhesion,friction,vibration and highspeed current collection in traditional wheel-rail systems,making it an important direction for the future development of high-speed rail technology.Design/methodology/approach–This paper elaborates on the demand and significance of developing high-speed maglev technology worldwide and examines the current status and technological maturity of several major high-speed maglev systems globally.Findings–This paper summarizes the challenges in the development of high-speed maglev railways in China.Based on this analysis,it puts forward considerations for future research on high-speed maglev railways.Originality/value–This paper describes the development status and technical maturity of several major high-speed maglev systems in the world for the first time,summarizes the existing problems in the development of China’s high-speed maglev railway and on this basis,puts forward the thinking of the next research of China’s high-speed maglev railway.展开更多
As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and com...As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.展开更多
Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model a...Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.展开更多
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec...Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.展开更多
With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach tr...With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach trees was selected by studying the temperature data of the solar greenhouses during the winter solstice,and a prediction model for daily average temperature was constructed.The results showed that greenhouse Ⅰ had reasonable structural parameters and good daylight during the day.However,due to the low wall thickness and poor insulation material,the minimum temperature was significantly lower than other greenhouses.The thermal insulation performance of greenhouse Ⅱ and Ⅲ was better than that of greenhouse Ⅰ,but the depth-span ratio and the front roof lighting angle were smaller.During the winter solstice,the average temperature of the three greenhouses was between 10 and 15℃,which was suitable for early cultivation of peach trees.The prediction model of daily average temperature was obtained:Daily average temperature=1.02+0.69×Daily average temperature of the previous day+0.02×Maximum temperature of the previous day-0.01×Minimum temperature of the previous day.To sum up,the structural parameters of brick-wall solar greenhouses suitable for early cultivation of peach trees in Changli area were as follows:span 6.5-8.5 m,depth-span ratio 0.47,front roof lighting angle 30°and wall thickness greater than 55 cm.展开更多
ropic 1:Regarding sustainable development and global public interests,what should international Al standards focus on?James Ong:Since 2019,I have witnessed the evolution of WAIC and found that a consensus on the philo...ropic 1:Regarding sustainable development and global public interests,what should international Al standards focus on?James Ong:Since 2019,I have witnessed the evolution of WAIC and found that a consensus on the philosophical and ethic level on advocating“AI for humanity”is necessary,since ethics factor carries more weight in standards development.I want to emphasize three points:AI assisting sustainable development,AI empowering a balanced global development,and human-AI coordination for preventing AI risks.展开更多
The stability of oil-dominated emulsions,including oil-based drilling fluids and crude oils,is crucial for mitigating gas hydrate risks in the petroleum and natural gas industries.Nanoparticles can stabilize oilwater ...The stability of oil-dominated emulsions,including oil-based drilling fluids and crude oils,is crucial for mitigating gas hydrate risks in the petroleum and natural gas industries.Nanoparticles can stabilize oilwater systems(Pickering emulsions)by residing at the oil-water interface.However,their effects on the kinetics of hydrate formation in these systems remain unclear.To address this,we experimentally investigated how hydrophilic and hydrophobic nano-CaCO_(3) influence CH4 hydrate formation within dynamic oil-water systems.A series of hydrate formation experiments were conducted with varying water cuts and different concentrations of nano-CaCO_(3) at a particle size of 20 nm,under 3℃ and 6 MPa.The induction time,hydrate formation volume,and hydrate growth rate were measured and calculated.The results indicate that hydrophilic nano-CaCO_(3) generally inhibits hydrate formation,particularly at high water cuts,while hydrophobic nano-CaCO_(3) can significantly inhibit or even prevent hydrate formation at low water cuts.Water cut strongly influences the kinetics of hydrate formation,and nanoparticle concentration also impacts the results,likely due to changes in oil-water interface stability caused by nanoparticle distribution.This study will offer valuable insights for designing deepwater oilbased drilling fluids using nanoparticles and ensuring safe multiphase flow in deepwater oil and gas operations.展开更多
Objective:To investigate the potential efficacy and safety of Lutai Danshen Baishao granules(LDBG)for treating female melasma associated with kidney deficiency and blood stasis patterns.Methods:A randomized,double-bli...Objective:To investigate the potential efficacy and safety of Lutai Danshen Baishao granules(LDBG)for treating female melasma associated with kidney deficiency and blood stasis patterns.Methods:A randomized,double-blind,placebo-controlled trial was conducted at the Third Central Hospital of Tianjin,China from March to December 2023.A total of 110 female patients with melasma linked to kidney deficiency and blood stasis were enrolled and treated with either LDBG or a placebo twice daily for 60 days.Efficacy was assessed through measures such as the total melasma area,reduced melasma area,reduction rate of melasma area,melasma color score,Melasma Area and Severity Index(MASI)score,and traditional Chinese medicine(TCM)symptom score scale.Safety assessments included routine blood and biochemical tests.Results:Participants in both groups were aged 52-63 years,with no significant differences.After the 2-month intervention,the total melasma area decreased in both groups;however,a greater reduction was observed in the test group[462.50 mm^(2)(12.81%)vs.100.00 mm2(3.11%),P<.001].Moreover,LDBG treatment significantly reduced the MASI and melasma color scores in the test group(P<.05).The total TCM symptom evaluation score significantly decreased(test group:6.00 vs.placebo group:7.00,P=.001),with significant relief in symptoms such as improvement in dark lips,nails,and waist soreness in the test group,compared with that in the placebo group(P<.05).Within-group comparisons revealed that TCM syndrome was significantly alleviated in the test group(P<.05).Conclusion:LDBG intervention shows promising effectiveness in reducing female melasma and alleviating TCM syndromes.展开更多
Background: Isoleucine(Ile) has been implicated in the regulation of energy homeostasis and adipogenesis.However,the impact of surplus dietary Ile intake on muscle lipogenesis remains unknown.The present study aimed t...Background: Isoleucine(Ile) has been implicated in the regulation of energy homeostasis and adipogenesis.However,the impact of surplus dietary Ile intake on muscle lipogenesis remains unknown.The present study aimed to investigate the impact of dietary supplementation of extra-Ile on lipogenesis,fatty acid profile and lipid accumulation in skeletal muscle in finishing pigs.Methods: Forty-eight barrows with initial body weight of 77.0 ± 0.1 kg were allotted to one of two groups and fed diets containing 0.39%,0.53% standardized ileal digestible(SID) Ile with six replicates per treatment and four pigs per replicate for 30 d.Results: Dietary Ile intake significantly improved the intramuscular fat(IMF) content and monounsaturated fatty acid(MUFA) concentration in the skeletal muscle(P < 0.05),and decreased the drip loss and shear force(P < 0.05) without influencing the growth performance of pigs(P > 0.05).Moreover,the phosphorylation of adenosine monophosphate activated protein kinase α(AMPKα) and acetyl coenzyme A carboxylase(ACC) proteins that monitor lipid metabolism were decreased in skeletal muscle of pigs offered extra-Ile diet(P < 0.05).The mRNA expression of adipose-specific genes adipocyte determination and differentiation factor 1(ADD1),fatty acid synthase(FAS),and stearoyl-CoA desaturase(SCD) were upregulated and the activity of SCD was increased as well(P < 0.05).Conclusions: Surplus dietary Ile intake could increase IMF accumulation and MUFA synthesis in skeletal muscle through depressing the phosphorylation of AMPKα-ACC and stimulating the expression and activity of SCD,and increasing the capability of lipogenesis in skeletal muscle.展开更多
Photon upconversion has received substantial attention owing to its great promise in broad applications from bioimaging to other frontier fields like display,upconversion laser,information security and anticounterfeit...Photon upconversion has received substantial attention owing to its great promise in broad applications from bioimaging to other frontier fields like display,upconversion laser,information security and anticounterfeiting.A smart control and manipulation of the upconversion luminescence has always been a key topic,however,to date the most efficient mechanism for upconversion nanoparticles remains the energy transfer upconversion and recently reported energy migration mediated upconversion.Recently,we found that the interfacial energy transfer(IET)is also an efficient approach for enabling and tuning photon upconversion of lanthanide ions.Moreover,it can be used for the mechanistic understanding of the interionic interactions such as energy transfer and energy migration on the nanoscale.In this review,the recent advances of the research on the IET are summarized,the principles for designing IET process and typical examples are discussed together with its applications in both mechanistic research and frontier information security.The challenges and perspectives for future research are also commented.展开更多
Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination o...Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.展开更多
Objective:To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e.Candida albicans(C.albicans) and Rhoddtorula sp.Methods:Four Algeria honeys of different botani...Objective:To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e.Candida albicans(C.albicans) and Rhoddtorula sp.Methods:Four Algeria honeys of different botanical origin were analvzed to test anlilungal effect against C.albicans,and Rhodotorula sp.Different concentrations(undiluted,10%,30%,50%and 70%w/v) of honey were studied in vitro for their antifugal aclivity using C.albicans and Rhodotorula sp.as fungal strains.Results:The range of the c liameter of zone of inhibition of various concentrations ol tested honeys was(7-23 mm) for Rhodotorula sp.,while C.albicans showed clearly resistance towards all concentrations used.The MICs of tested honey concentrations against C.albicans and Rhodotorula sp.were(70.09-93.48)%and(4.90-99.70)%v/v,respectively.Conclusions:This study demonstrales that,in vitro,these natural products have clearly an antifungal activity against Rhodotorula sp.and C.albicans.展开更多
Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward tra...Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.展开更多
Mechanical properties of weld metal are the key factors affecting the quality of heavy-wall X80 hot induction bends. The effects of bending parameters on the mechanical properties of weld metal for hot bends were inve...Mechanical properties of weld metal are the key factors affecting the quality of heavy-wall X80 hot induction bends. The effects of bending parameters on the mechanical properties of weld metal for hot bends were investigated by simulation conducted on a Gleeble 3500 thermal simulator. Continuous cooling transformation (CCT) dia- grams of the weld metal were also constructed. The influences of hot bending parameters (such as reheating temperature, cooling rate, and tempering temperature) on the microstructure and mechanical properties of weld metal were also analyzed. Results show that the strength of all weld metal specimens is higher than the value indicated in the technical specification and increases with the increase of reheating temperature, cooling rate, and tempering tempera ture. The impact toughness is apparently related to the variation of reheating temperature, cooling rate, and tempering temperature.展开更多
文摘Purpose–This study summarizes the overall situation of the resources of the national science and technology innovation platform in the railway industry,including the distribution of platform types,supporting institutions,construction sites,professional fields,etc.,to provide a reference for the further improvement and optimization of the national science and technology innovation platform system in the railway industry.Design/methodology/approach–Through literature review,field investigation,expert consultation and other methods,this paper systematically investigates and analyzes the development status of the national science and technology innovation platform in the railway industry.Findings–Taking the national science and technology innovation platform of the railway industry as the research object,this paper investigates and analyzes the construction,development and distribution of the national science and technology innovation platform of railway industry over the years.And the National Engineering Research Center of High-speed Railway and Urban Rail Transit System Technology was taken as an example to introduce its operation effect.Originality/value–China Railway has made great development achievements,with the construction and development of national science and technology innovation platform in the railway industry.In recent years,a large number of national science and technology innovation platforms have been built in the railway industry,which play an important role in railway technological innovation,standard setting and commodification,and Railway Sciences provide strong support for railway technology development.
基金Supported by Binzhou Social Science Planning Project(25-SKGH-063)Shandong Agricultural Innovation Team Project(SDAIT-10-06,SDAIT-23-10).
文摘This paper systematically analyzed the development status of sheep industry in Lubei region,and comprehensively expounded the scale and distribution of key industries,breed resources and genetic characteristics,feeding management status,disease prevention and control and veterinary services,and sheep product processing and sales.The research shows that the sheep industry in Lubei region has formed a certain scale,but there are some problems such as intensified resource and environmental constraints,unreasonable industrial structure,insufficient scientific and technological innovation capacity and market competitiveness to be improved.In view of these problems,this paper put forward some countermeasures and suggestions to promote the high-quality development of the industry,including establishing forage and feed system,promoting the adjustment and optimization of industrial structure,strengthening scientific and technological innovation and talent cultivation and introduction,and enhancing brand influence and market competitiveness,providing useful reference for the sustainable development of sheep industry in Lubei region.
文摘In recent years, with the rapid development of large-scale distributed wireless sensor systems and micro-power devices, the disadvantages of traditional chemical battery power supply mode are becoming more and more obvious. Piezoelectric energy collector has attracted wide attention because of its simple structure, no heating, no electromagnetic interference, environmental protection and easy miniaturization. Wind energy is a reproducible resource. Wind energy harvester based on piezoelectric intelligent material can be named piezoelectric wind energy harvesting which converts wind energy into electric power and will have great application prospect. To promote the development of piezoelectric wind energy harvesting technology, research statuses on piezoelectric wind energy harvesting technology are reviewed. The existing problem and development direction about piezoelectric wind energy harvester in the future are discussed. The study will be helpful for researchers engaged in piezoelectric wind energy harvesting.
文摘Our database tracking of USA water usage per well indicates that traditionally shale operators have been using, on average 3 to 6 million gallons of water; even up to 8 million for the en- tire life cycle of the well based on its suitability for re-fracturing to stimulate their long and lateral ho- rizontal welis. According to our data, sourcing, storage, transportation, treatment, and disposal of this large volume of water could account for up to 10% of overall drilling and completion costs. With in- creasingly stringent regulations governing the use of fresh water and growing challenges associated with storage and use of produced and flowback water in hydraulic fracturing, finding alternative sources of fracturing fluid is already a hot debate among both the scientific community and industry experts. On the other hand, waterless fracturing technology providers claim their technology can solve the concerns of water availability for shale development. This study reviews high-level technical issues and opportunities in this challenging and growing market and evaluates key economic drivers behind water management practices such as waterless fracturing technologies, based on a given shale gas play in the United States and experience gained in Canada. Water costs are analyzed under a variety of scenarios with and without the use of (fresh) water. The results are complemented by surveys from several oil and gas operators. Our economic analysis shows that fresh water usage offers the greatest economic return. In regions where water sourcing is a challenge, however, the short-term economic advantage of using non-fresh water-based fracturing outweighs the capital costs required by waterless fracturing methods. Until waterless methods are cost competitive, recycled water usage with low treatment offers a similar net present value (NPV) to that of sourcing freshwater via truck, for in- stance.
基金funding from the Key Research Project of Tarim Oilfield Company of Petrochina(671023060003)for this study.
文摘Deep condensate gas reservoirs exhibit highly complex and variable phase behaviors,making it crucial to understand the relationship between fluid phase states and flow patterns.This study conducts a comprehensive analysis of the actual production process of the deep condensate gas well A1 in a certain oilfield in China.Combining phase behavior analysis and CMG software simulations,the study systematically investigates phase transitions,viscosity,and density changes in the gas and liquid phases under different pressure conditions,with a reservoir temperature of 165°C.The research covers three crucial depletion stages of the reservoir:single-phase flow,two-phase transition,and two-phase flow.The findings indicate that retrograde condensation occurs when the pressure falls below the dew point pressure,reachingmaximum condensate liquid production at around 25MPa.As pressure decreases,gas phase density and viscosity gradually decrease,while liquid phase density and viscosity show an increasing trend.In the initial single-phase flow stage,maintaining a consistent gas-oil ratio is observed when both bottom-hole and reservoir pressures are higher than the dew point pressure.However,a sudden drop in bottom-hole pressure below the dew point triggers the production of condensate oil,significantly reducing subsequent gas and oil production.In the transitional two-phase flow stage,as the bottom-hole pressure further decreases,the reservoir exhibits a complex flow regime with coexisting areas of gas and liquid.In the subsequent two-phase flow stage,when both bottom-hole and reservoir pressures are below the dew point pressure,a significant increase in the gas-oil ratio is observed.The reservoir manifests a two-phase flow regime,devoid of single-phase gas flow areas.For lowpressure conditions in deep condensate gas reservoirs,considerations include gas injection,gas lift,and cyclic gas injection and production in surrounding wells.Additionally,techniques such as hot nitrogen or CO_(2) injection can be employed to mitigate retrograde condensation damage.The implications of this study are crucial for developing targeted development strategies and enhancing the overall development of deep condensate gas reservoirs.
文摘Since 1990s, due to the development of petroleum exploration technology, petroleum machinery and equipment have been addressed by all nations. By means of heavier investment on technology innovation, adopting advanced technology to develop new equipments by big oil companies, the overall levels of adaptability, reliability, diversity, sedation, integrity, automatization, intelligence are highly improved. In recent years, the technology of exploration and development for oil and gas in China has expanded rapidly, while the technique of drilling and production is approaching world level. As the drilling engineering orients to the directional well, ultra-deep well and complex well, the research and development of downhole tools to match the technique has shown its importance.
基金This paper was supported by the funding of Strategic research and consulting project of Chinese Academy of Engineering(Grant No.2022-XBZD-20).
文摘Purpose–High-speed maglev technology can address the issues of adhesion,friction,vibration and highspeed current collection in traditional wheel-rail systems,making it an important direction for the future development of high-speed rail technology.Design/methodology/approach–This paper elaborates on the demand and significance of developing high-speed maglev technology worldwide and examines the current status and technological maturity of several major high-speed maglev systems globally.Findings–This paper summarizes the challenges in the development of high-speed maglev railways in China.Based on this analysis,it puts forward considerations for future research on high-speed maglev railways.Originality/value–This paper describes the development status and technical maturity of several major high-speed maglev systems in the world for the first time,summarizes the existing problems in the development of China’s high-speed maglev railway and on this basis,puts forward the thinking of the next research of China’s high-speed maglev railway.
基金supported by the Basic Science Center Project for the National Natural Science Foundation of China(No.72088101)the S&T Program of Hebei(No.23564101D).
文摘As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.
文摘Purpose–The study aims to build a high-precision longitudinal dynamics model for heavy-haul trains and validate it with line test data,present an optimization method for multi-stage cyclic brakes based on the model and conduct a multi-objective detailed evaluation of the driver’s manipulation during cyclic braking.Design/methodology/approach–The high-precision longitudinal train dynamics model was established and verified by the cyclic braking test data of the 20,000 t heavy-haul combination train on the long and steep downgrade.Then the genetic algorithm is employed for optimization subsequent to decoupling multiple cyclic braking procedures,with due consideration of driver operation rules.For evaluation,key manipulation assessments in the scenario are prioritized,supplemented by multi-objective evaluation requirements,and the computational model is employed for detailed evaluation analysis.Findings–Based on the model,experimental data reveal that the probability of longitudinal force error being less than 64.6 kN is approximately 68%,95%for less than 129.2 kN and 99.7%for less than 193.8 kN.Upon optimizing manipulations during the cyclic braking,the maximum reduction in coupler force spans from 21%∼23.9%.Andtheevaluation scoresimply that a proper elevationof the releasingspeed favorssafety.A high electric braking force,although beneficial to some extent for energy-saving,is detrimental to reducing coupler force.Originality/value–The results will provide a theoretical basis and practical guidance for further ensuring the safety and energy-efficient operation of heavy haul trains on long downhill sections and improving the operational quality of heavy-haul trains.
文摘Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.
基金Supported by Modern Agricultural Industry Technology System Innovation Team Construction in Hebei Province(HBCT2023130404).
文摘With brick-wall solar greenhouses in Changli area as the research object,using temperature dynamic monitoring and statistical methods,the greenhouse structure suitable for promoting early cultivation of local peach trees was selected by studying the temperature data of the solar greenhouses during the winter solstice,and a prediction model for daily average temperature was constructed.The results showed that greenhouse Ⅰ had reasonable structural parameters and good daylight during the day.However,due to the low wall thickness and poor insulation material,the minimum temperature was significantly lower than other greenhouses.The thermal insulation performance of greenhouse Ⅱ and Ⅲ was better than that of greenhouse Ⅰ,but the depth-span ratio and the front roof lighting angle were smaller.During the winter solstice,the average temperature of the three greenhouses was between 10 and 15℃,which was suitable for early cultivation of peach trees.The prediction model of daily average temperature was obtained:Daily average temperature=1.02+0.69×Daily average temperature of the previous day+0.02×Maximum temperature of the previous day-0.01×Minimum temperature of the previous day.To sum up,the structural parameters of brick-wall solar greenhouses suitable for early cultivation of peach trees in Changli area were as follows:span 6.5-8.5 m,depth-span ratio 0.47,front roof lighting angle 30°and wall thickness greater than 55 cm.
文摘ropic 1:Regarding sustainable development and global public interests,what should international Al standards focus on?James Ong:Since 2019,I have witnessed the evolution of WAIC and found that a consensus on the philosophical and ethic level on advocating“AI for humanity”is necessary,since ethics factor carries more weight in standards development.I want to emphasize three points:AI assisting sustainable development,AI empowering a balanced global development,and human-AI coordination for preventing AI risks.
基金supported by the National Natural Science Foundation of China(No.42402319,51704266)the Anhui Provincial Natural Science Foundation(No.2308085QE151)+3 种基金the Natural Science Research Project of Anhui Educational Committee(No.2023AH051222)Young Talent Nurturing Program of Anhui Association For Science and Technology(No.RCTJ202403)the Open Foundation of the Innovation Base of Fine Mine Prospecting and Intelligent Monitoring Technology(No.2023-MPIM-01)partly supported by the Open Fund of Engineering Research Center of Rock-Soil Drilling&Excavation and Protection(No.202407).
文摘The stability of oil-dominated emulsions,including oil-based drilling fluids and crude oils,is crucial for mitigating gas hydrate risks in the petroleum and natural gas industries.Nanoparticles can stabilize oilwater systems(Pickering emulsions)by residing at the oil-water interface.However,their effects on the kinetics of hydrate formation in these systems remain unclear.To address this,we experimentally investigated how hydrophilic and hydrophobic nano-CaCO_(3) influence CH4 hydrate formation within dynamic oil-water systems.A series of hydrate formation experiments were conducted with varying water cuts and different concentrations of nano-CaCO_(3) at a particle size of 20 nm,under 3℃ and 6 MPa.The induction time,hydrate formation volume,and hydrate growth rate were measured and calculated.The results indicate that hydrophilic nano-CaCO_(3) generally inhibits hydrate formation,particularly at high water cuts,while hydrophobic nano-CaCO_(3) can significantly inhibit or even prevent hydrate formation at low water cuts.Water cut strongly influences the kinetics of hydrate formation,and nanoparticle concentration also impacts the results,likely due to changes in oil-water interface stability caused by nanoparticle distribution.This study will offer valuable insights for designing deepwater oilbased drilling fluids using nanoparticles and ensuring safe multiphase flow in deepwater oil and gas operations.
基金funded by the National Key Research and Development Plan of the Traditional Chinese Medicine Modernization Research Key Project(2018YFC1706800).
文摘Objective:To investigate the potential efficacy and safety of Lutai Danshen Baishao granules(LDBG)for treating female melasma associated with kidney deficiency and blood stasis patterns.Methods:A randomized,double-blind,placebo-controlled trial was conducted at the Third Central Hospital of Tianjin,China from March to December 2023.A total of 110 female patients with melasma linked to kidney deficiency and blood stasis were enrolled and treated with either LDBG or a placebo twice daily for 60 days.Efficacy was assessed through measures such as the total melasma area,reduced melasma area,reduction rate of melasma area,melasma color score,Melasma Area and Severity Index(MASI)score,and traditional Chinese medicine(TCM)symptom score scale.Safety assessments included routine blood and biochemical tests.Results:Participants in both groups were aged 52-63 years,with no significant differences.After the 2-month intervention,the total melasma area decreased in both groups;however,a greater reduction was observed in the test group[462.50 mm^(2)(12.81%)vs.100.00 mm2(3.11%),P<.001].Moreover,LDBG treatment significantly reduced the MASI and melasma color scores in the test group(P<.05).The total TCM symptom evaluation score significantly decreased(test group:6.00 vs.placebo group:7.00,P=.001),with significant relief in symptoms such as improvement in dark lips,nails,and waist soreness in the test group,compared with that in the placebo group(P<.05).Within-group comparisons revealed that TCM syndrome was significantly alleviated in the test group(P<.05).Conclusion:LDBG intervention shows promising effectiveness in reducing female melasma and alleviating TCM syndromes.
基金supported by the National Key Research and Development Program of China(2018YFD0500402)the National Natural Science Foundation of China(No.31672431)the National Key Research and Development Program(2016YFD0700201)
文摘Background: Isoleucine(Ile) has been implicated in the regulation of energy homeostasis and adipogenesis.However,the impact of surplus dietary Ile intake on muscle lipogenesis remains unknown.The present study aimed to investigate the impact of dietary supplementation of extra-Ile on lipogenesis,fatty acid profile and lipid accumulation in skeletal muscle in finishing pigs.Methods: Forty-eight barrows with initial body weight of 77.0 ± 0.1 kg were allotted to one of two groups and fed diets containing 0.39%,0.53% standardized ileal digestible(SID) Ile with six replicates per treatment and four pigs per replicate for 30 d.Results: Dietary Ile intake significantly improved the intramuscular fat(IMF) content and monounsaturated fatty acid(MUFA) concentration in the skeletal muscle(P < 0.05),and decreased the drip loss and shear force(P < 0.05) without influencing the growth performance of pigs(P > 0.05).Moreover,the phosphorylation of adenosine monophosphate activated protein kinase α(AMPKα) and acetyl coenzyme A carboxylase(ACC) proteins that monitor lipid metabolism were decreased in skeletal muscle of pigs offered extra-Ile diet(P < 0.05).The mRNA expression of adipose-specific genes adipocyte determination and differentiation factor 1(ADD1),fatty acid synthase(FAS),and stearoyl-CoA desaturase(SCD) were upregulated and the activity of SCD was increased as well(P < 0.05).Conclusions: Surplus dietary Ile intake could increase IMF accumulation and MUFA synthesis in skeletal muscle through depressing the phosphorylation of AMPKα-ACC and stimulating the expression and activity of SCD,and increasing the capability of lipogenesis in skeletal muscle.
基金Project supported by the National Natural Science Foundation of China(51702101,51972119,51472088)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137)。
文摘Photon upconversion has received substantial attention owing to its great promise in broad applications from bioimaging to other frontier fields like display,upconversion laser,information security and anticounterfeiting.A smart control and manipulation of the upconversion luminescence has always been a key topic,however,to date the most efficient mechanism for upconversion nanoparticles remains the energy transfer upconversion and recently reported energy migration mediated upconversion.Recently,we found that the interfacial energy transfer(IET)is also an efficient approach for enabling and tuning photon upconversion of lanthanide ions.Moreover,it can be used for the mechanistic understanding of the interionic interactions such as energy transfer and energy migration on the nanoscale.In this review,the recent advances of the research on the IET are summarized,the principles for designing IET process and typical examples are discussed together with its applications in both mechanistic research and frontier information security.The challenges and perspectives for future research are also commented.
基金supported by National Natural Science Foundation of China (Grant No. 50675145)Shanxi Provincial Key Project of Science and Technology of China (Grant No. 2006031147)+1 种基金Shanxi Provincial Innovation Project for Graduate Students of China (Grant No. 20061027)Shanxi Provincial Key Project for Studied-abroad Returnee of China
文摘Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that: the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable; in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process; the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.
基金supported by project CNEPRU,Institute of Veterinary Sciences(IVS),University Ibn-Khaldoun(TIARET),Algeria(grant No.F023 2009/0009)
文摘Objective:To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e.Candida albicans(C.albicans) and Rhoddtorula sp.Methods:Four Algeria honeys of different botanical origin were analvzed to test anlilungal effect against C.albicans,and Rhodotorula sp.Different concentrations(undiluted,10%,30%,50%and 70%w/v) of honey were studied in vitro for their antifugal aclivity using C.albicans and Rhodotorula sp.as fungal strains.Results:The range of the c liameter of zone of inhibition of various concentrations ol tested honeys was(7-23 mm) for Rhodotorula sp.,while C.albicans showed clearly resistance towards all concentrations used.The MICs of tested honey concentrations against C.albicans and Rhodotorula sp.were(70.09-93.48)%and(4.90-99.70)%v/v,respectively.Conclusions:This study demonstrales that,in vitro,these natural products have clearly an antifungal activity against Rhodotorula sp.and C.albicans.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2013AA031502 and 2014AA041902the National Natural Science Foundation of China under Grant Nos 11174085,51132004,and 51302086+3 种基金the Guangdong Natural Science Foundation under Grant Nos S2011030001349 and S20120011380the China National Funds for Distinguished Young Scientists under Grant No 61325024the Science and Technology Project of Guangdong Province under Grant No 2013B090500028the’Cross and Cooperative’Science and Technology Innovation Team Project of Chinese Academy of Sciences under Grant No 2012-119
文摘Effective multiple optoelectronic feedback circuits for simultaneously suppressing low-frequency and relaxation oscillation intensity noise in a single-frequency phosphate fiber laser are demonstrated. The forward transfer function, which relates the laser output intensity to the pump modulations, is measured and analyzed. A custom two-path feedback system operating at different frequency bands is designed to adjust the pump current directly. The relative intensity noise is decreased by 20dB from 0.2 to 5kHz and over lOdB from 5 to lOkHz. The relaxation oscillation peak is suppressed by 22dB. In addition, a long term (24h) laser instability of less than 0.05% is achieved.
基金Sponsored by National Natural Science Foundation of China(51171162)R & D Project of CITIC-CBMM(2011-D056-3)
文摘Mechanical properties of weld metal are the key factors affecting the quality of heavy-wall X80 hot induction bends. The effects of bending parameters on the mechanical properties of weld metal for hot bends were investigated by simulation conducted on a Gleeble 3500 thermal simulator. Continuous cooling transformation (CCT) dia- grams of the weld metal were also constructed. The influences of hot bending parameters (such as reheating temperature, cooling rate, and tempering temperature) on the microstructure and mechanical properties of weld metal were also analyzed. Results show that the strength of all weld metal specimens is higher than the value indicated in the technical specification and increases with the increase of reheating temperature, cooling rate, and tempering tempera ture. The impact toughness is apparently related to the variation of reheating temperature, cooling rate, and tempering temperature.