Developing deNO_(x)catalysts with lower activity temperatures range significantly reduces NH_(3)selective catalytic reduction(SCR)operating costs for low-temperature industrial flue gases.Herein,a novel FeVO_(4)/CeO_(...Developing deNO_(x)catalysts with lower activity temperatures range significantly reduces NH_(3)selective catalytic reduction(SCR)operating costs for low-temperature industrial flue gases.Herein,a novel FeVO_(4)/CeO_(2)catalyst with great low-temperature NH_(3)-SCR and nitrogen selectivity was synthesized using a dipping method.Characterization techniques such as X-ray diffraction,Raman spectroscopy,specific surface and porosity analysis,H2 temperature-programmed reduction,NH_(3)temperature-programmed desorption,X-ray photoelectron spectroscopy,and the in situ diffused reflectance infrared Fourier transform spectroscopy were used to investigate the catalytic mechanism.An appropriate addition for FeVO_(4)in the catalyst was 5 wt.%from the results,and the active substance content reached the maximum dispersal capacity of the carrier.The NO_(x)conversion exceeded 90%,and the nitrogen selectivity was more than 98%over this catalyst at 200–350℃.The activity was kept at 88%after 7.5 h of reaction at 200℃ for 7.5 h in 35 mg m^(-3)SO_(2)gas.The remarkable deNO_(x)activity,nitrogen selectivity,and sulphur resistance performances are attributed to the low redox temperature,the abundance of medium-strong acid and strong acid sites,the sufficient adsorbed oxygen,and the superior Fe^(2+)content on the surface.The Langmuir–Hinshelwood mechanism was observed on the FeVO_(4)/CeO_(2)catalyst in the NH_(3)selective catalytic reduction of NO_(x).展开更多
The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 ...The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.展开更多
This paper proposes a new method to predict the corona onset voltage for a rod- plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the...This paper proposes a new method to predict the corona onset voltage for a rod- plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the samples, this method can realize accurate prediction with few training data. Only electric field features are chosen as the input; no geometric parameter is included. Therefore, the experiment data of one kind of electrode can be used to predict the corona onset voltages of other electrodes with different sizes. With the experimental data obtained by ozone detection technology, and experimental data provided by the reference, the efficiency of the proposed method is validated. Accurate predicted results with an average relative less than 3% are obtained with only 6 experimental data.展开更多
The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting e...The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting effect and damage mechanism were discussed in detail.The results show that under symmetric stress control,the forward ratcheting deformation is observed.Under asymmetric stress control,the ratcheting strain increases rapidly with mean stress and stress amplitude increasing.Under high stress amplitude,the influence of mean stress is more significant.In addition,by studying the variation of strain energy density,it is found that the stress amplitude mainly promotes the fatigue damage,while the mean stress leads to the ratcheting damage.In addition,fractographic observation shows that the crack initiates in the brittle metal compound at the interface,and the steel has higher resistance to crack propagation.Finally,the accuracy of life prediction model considering ratcheting effect is discussed in detail,and a high-precision life prediction model directly based on mean stress and stress amplitude is proposed.展开更多
This paper aims to design a MCU-based smart contactor system, which will realize functions of real time surveillance of contactors’ work status and data exchange with host computer, thus instantly reflect different s...This paper aims to design a MCU-based smart contactor system, which will realize functions of real time surveillance of contactors’ work status and data exchange with host computer, thus instantly reflect different status of the system. In case of abnormal status such as over-current or under-voltage, the contactor will be able to automatically cut off power supply to protect electrical load and the circuit. Through ARINC485 bus, system computer will collect and record contactor parameters, including contact voltage, contact current, supply frequency, contact temperature and contact status to provide critical data to the examination and repair of contactors.展开更多
[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010...[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010, the interannual and interdecadal variation characteristics of rainstorm in the flood season in recent 60 years were analyzed by using the linear regression analysis, correlation analysis, wavelet analysis and so on. Moreover, the relationship between the rainstorm in the flood season and annual average temperature was analyzed. [Result] In recent 60 years, the rainstorm amount and days in the flood season in Guangzhou respectively increased with 6.23 mm/10 a and 0.27 d/10 a linear trends. The most rainstorm days (rainfall) was in 2001 and was 15 d (1 085.7 mm). There was no rainstorm in the least year (1990). The interannual variations of rainstorm amount and days in the flood season in Guangzhou obviously increased in recent 20 years. The decadal and interannual variations of rainstorm in the prior and latter flood seasons had the difference. The trend in the prior flood season increased and in the latter flood season slightly decreased. The positive correlation between the rainstorm days and the annual average temperature in the flood season in Guangzhou was significant, and the relative coefficient was 0.22, which passed α=0.02 significance level test. The total rainstorm days in the prior flood season in Guangzhou City mainly had 4.2-year interannual and 52.9-year interdecadal periodic variations. The total rainstorm days in the latter flood season mainly had 5.5-year interannual and 18.4-year interdecadal periodic variations. [Conclusion] The research provided the scientific basis for the precipitation forecast in the flood season.展开更多
Empirical equations were used to fit tree growth through the analysis of parse wood data, functions with tree growth amount as the dependent variable and annual sunshine duration as the independent variable. According...Empirical equations were used to fit tree growth through the analysis of parse wood data, functions with tree growth amount as the dependent variable and annual sunshine duration as the independent variable. According to arithmetical operations like derivation of the functions, the relative contribution rate of light to tree growth was 64.8%, which was almost equal to the relative contribution rate of precipitation to tree growth. Therefore, the light and precipitation were of equal importance to tree growth.展开更多
The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses...The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.展开更多
Charge transport in oil impregnated paper impacts the insulation performance of a transformer.This paper proposes a simulation method for the charge transport in oil impregnated paper insulation.The transient upstream...Charge transport in oil impregnated paper impacts the insulation performance of a transformer.This paper proposes a simulation method for the charge transport in oil impregnated paper insulation.The transient upstream finite element method(FEM)is applied to the transport equations of bipolar charges for establishing a numerical simulation model of charge transport in oil impregnated paper insulation.The method is validated by experimental results.The charge transport and electric field distribution in single-layer oil impregnated paper insulation under different temperature gradients is simulated.The trends of the simulation results are seen to agree with the corresponding experimental results.This paper conducts exploratory research into the simulation of charge transportation phenomenon in oil impregnated paper,and is of importance to the design of oil impregnated paper insulation.展开更多
基金supported by the National Natural Science Foundation of China(52204332 and 52174290)the Outstanding Youth Fund of Anhui Province(2208085J19)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(21KJB450002).
文摘Developing deNO_(x)catalysts with lower activity temperatures range significantly reduces NH_(3)selective catalytic reduction(SCR)operating costs for low-temperature industrial flue gases.Herein,a novel FeVO_(4)/CeO_(2)catalyst with great low-temperature NH_(3)-SCR and nitrogen selectivity was synthesized using a dipping method.Characterization techniques such as X-ray diffraction,Raman spectroscopy,specific surface and porosity analysis,H2 temperature-programmed reduction,NH_(3)temperature-programmed desorption,X-ray photoelectron spectroscopy,and the in situ diffused reflectance infrared Fourier transform spectroscopy were used to investigate the catalytic mechanism.An appropriate addition for FeVO_(4)in the catalyst was 5 wt.%from the results,and the active substance content reached the maximum dispersal capacity of the carrier.The NO_(x)conversion exceeded 90%,and the nitrogen selectivity was more than 98%over this catalyst at 200–350℃.The activity was kept at 88%after 7.5 h of reaction at 200℃ for 7.5 h in 35 mg m^(-3)SO_(2)gas.The remarkable deNO_(x)activity,nitrogen selectivity,and sulphur resistance performances are attributed to the low redox temperature,the abundance of medium-strong acid and strong acid sites,the sufficient adsorbed oxygen,and the superior Fe^(2+)content on the surface.The Langmuir–Hinshelwood mechanism was observed on the FeVO_(4)/CeO_(2)catalyst in the NH_(3)selective catalytic reduction of NO_(x).
基金The authors are grateful for the financial supports from Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology of China(JSJMYWX2020-01)Zhejiang Provincial Natural Science Foundation of China(LY18E050005)the Startup Foundation for Introducing Talent of Nanjing Institute of Industry Technology(YK18-13-02)of China.
文摘The deformation mechanism of C5191 phosphor bronze sheet under ultra-high-speed blanking was investigated.By virtue of a DOBBY-OMEGA F1 ultra-high-speed press,the ultra-high-speed blanking test was conducted on C5191 phosphor bronze sheets with a thickness of 0.12 mm at 3000 strokes per minute.The microstructures of the blanked edges were characterized and analyzed separately by electron back-scatter diffraction(EBSD)and transmission electron microscopy(TEM).The results show that grains in the blanked edges are stretched along the blanking direction.Strong{001}<100>cube textures(maximum pole densities of 9 and 12,respectively)and secondarily strong{011}<011>textures(maximum pole densities of 4 and 7,respectively)are formed in local zones.Additionally,deformation twins are found in the shear zone of the blanked edges which are rotated and coarsened due to the blanking-induced extrusion and local thermal effect which can further form into sub-grains with clear and high-angle boundaries.The C5191 phosphor bronze sheet is subjected to adiabatic shear during ultra-high-speed blanking,accompanied with dynamic recrystallization.
基金supported by National Natural Science Foundation of China(No.51477120)
文摘This paper proposes a new method to predict the corona onset voltage for a rod- plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the samples, this method can realize accurate prediction with few training data. Only electric field features are chosen as the input; no geometric parameter is included. Therefore, the experiment data of one kind of electrode can be used to predict the corona onset voltages of other electrodes with different sizes. With the experimental data obtained by ozone detection technology, and experimental data provided by the reference, the efficiency of the proposed method is validated. Accurate predicted results with an average relative less than 3% are obtained with only 6 experimental data.
基金the financial support from the National Natural Science Foundation of China(Nos.51975271,51675260,51475223)the Starting Research Fund of Nanjing Vocational University of Industry Technology,China(No.YK20-14-05)。
文摘The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting effect and damage mechanism were discussed in detail.The results show that under symmetric stress control,the forward ratcheting deformation is observed.Under asymmetric stress control,the ratcheting strain increases rapidly with mean stress and stress amplitude increasing.Under high stress amplitude,the influence of mean stress is more significant.In addition,by studying the variation of strain energy density,it is found that the stress amplitude mainly promotes the fatigue damage,while the mean stress leads to the ratcheting damage.In addition,fractographic observation shows that the crack initiates in the brittle metal compound at the interface,and the steel has higher resistance to crack propagation.Finally,the accuracy of life prediction model considering ratcheting effect is discussed in detail,and a high-precision life prediction model directly based on mean stress and stress amplitude is proposed.
文摘This paper aims to design a MCU-based smart contactor system, which will realize functions of real time surveillance of contactors’ work status and data exchange with host computer, thus instantly reflect different status of the system. In case of abnormal status such as over-current or under-voltage, the contactor will be able to automatically cut off power supply to protect electrical load and the circuit. Through ARINC485 bus, system computer will collect and record contactor parameters, including contact voltage, contact current, supply frequency, contact temperature and contact status to provide critical data to the examination and repair of contactors.
文摘[Objective] The research aimed to analyze the variations of rainstorm frequency, intensity and period in the flood season in Guangzhou. [Method] Based on the daily precipitation data in Guangzhou City during 1951-2010, the interannual and interdecadal variation characteristics of rainstorm in the flood season in recent 60 years were analyzed by using the linear regression analysis, correlation analysis, wavelet analysis and so on. Moreover, the relationship between the rainstorm in the flood season and annual average temperature was analyzed. [Result] In recent 60 years, the rainstorm amount and days in the flood season in Guangzhou respectively increased with 6.23 mm/10 a and 0.27 d/10 a linear trends. The most rainstorm days (rainfall) was in 2001 and was 15 d (1 085.7 mm). There was no rainstorm in the least year (1990). The interannual variations of rainstorm amount and days in the flood season in Guangzhou obviously increased in recent 20 years. The decadal and interannual variations of rainstorm in the prior and latter flood seasons had the difference. The trend in the prior flood season increased and in the latter flood season slightly decreased. The positive correlation between the rainstorm days and the annual average temperature in the flood season in Guangzhou was significant, and the relative coefficient was 0.22, which passed α=0.02 significance level test. The total rainstorm days in the prior flood season in Guangzhou City mainly had 4.2-year interannual and 52.9-year interdecadal periodic variations. The total rainstorm days in the latter flood season mainly had 5.5-year interannual and 18.4-year interdecadal periodic variations. [Conclusion] The research provided the scientific basis for the precipitation forecast in the flood season.
文摘Empirical equations were used to fit tree growth through the analysis of parse wood data, functions with tree growth amount as the dependent variable and annual sunshine duration as the independent variable. According to arithmetical operations like derivation of the functions, the relative contribution rate of light to tree growth was 64.8%, which was almost equal to the relative contribution rate of precipitation to tree growth. Therefore, the light and precipitation were of equal importance to tree growth.
基金Supported by the National Natural Science Foundation of China under Grant No 1175012the China Postdoctoral Science Foundation under Grant No 2016M600897the National Science and Technology Major Project of the Ministry of Science and Technology of China under Grant No 2013ZX04001-071
文摘The hydrodynamic effects of molten surface of titanium alloy on the morphology evolution by intense pulsed ion beam (IPIB) irradiation are studied. It is experimentally revealed that under irradiation of IPIB pulses, the surface morphology of titanium alloy in a spatial scale of μm exhibits an obvious smoothening trend. The mechanism of this phenomenon is explained by the mass transfer caused by the surface tension of molten metal. Hydrodynamic simulation with a combination of the finite element method and the level set method reveals that the change in curvature on the molten surface leads to uneven distribution of surface tension. Mass transfer is caused by the relief of surface tension, and meanwhile a flattening trend in the surface morphology evolution is achieved.
基金supported by the National Basic Research Program(973 Program)(2011CB209404)National Natural Science Foundation of China(51477120).
文摘Charge transport in oil impregnated paper impacts the insulation performance of a transformer.This paper proposes a simulation method for the charge transport in oil impregnated paper insulation.The transient upstream finite element method(FEM)is applied to the transport equations of bipolar charges for establishing a numerical simulation model of charge transport in oil impregnated paper insulation.The method is validated by experimental results.The charge transport and electric field distribution in single-layer oil impregnated paper insulation under different temperature gradients is simulated.The trends of the simulation results are seen to agree with the corresponding experimental results.This paper conducts exploratory research into the simulation of charge transportation phenomenon in oil impregnated paper,and is of importance to the design of oil impregnated paper insulation.