This article provides an overview of the application of bionic technology in marine cruising equipment,discussing its research progress and future development trends.Marine cruising is a crucial means of gaining insig...This article provides an overview of the application of bionic technology in marine cruising equipment,discussing its research progress and future development trends.Marine cruising is a crucial means of gaining insights into the marine environment and conducting scientific research.However,conventional marine cruising equipment faces numerous challenges when dealing with complex and ever-changing marine environments.Bionic technology,as a means of drawing inspiration from the structure and functions of living organisms,offers new approaches and methods to address the challenges faced by marine cruising equipment and has found widespread application.The article primarily focuses on the applications and historical developments of bionic technology in propulsion methods,drag reduction,and surface antifouling.It summarizes the design principles,manufacturing techniques,and optimization methods for marine biomimetic cruising equipment.Finally,this paper analyzes the achievements,challenges,and future directions of bionic technology in marine cruising equipment.The application of bionic technology in marine cruising equipment holds vast potential for development,enabling us to better confront the challenges of marine exploration and research by drawing wisdom from nature and driving advancements in marine science.展开更多
The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are...The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.展开更多
In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensit...In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensitive information.How to effectively categorize and protect sensitive data has become an urgent issue in educational data security.This paper systematically researches and constructs a multi-dimensional classification framework for sensitive educational data,and discusses its security protection strategy from the aspects of identification and desensitization,aiming to provide new ideas for the security management of sensitive educational data and to help the construction of an educational data security ecosystem in the era of digital intelligence.展开更多
In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wa...In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wave velocity model of the shallow sea bottom by leveraging the seismic wave information at the fluid-solid interface in the ocean,and improve the lateral resolution of marine converted wave data.Given that the dispersion characteristics of surface waves are sensitive to the S-wave velocity of subsurface media,and that Scholte surface waves,which propagate at the interface between liquid and solid media,exist in the data of marine oil and gas exploration,this paper proposes a Scholte wave inversion and modeling method based on oil and gas exploration using ocean bottom nodes.By using the method for calculating the Scholte wave dispersion spectrum based on the Bessel kernel function,the accuracy of dispersion spectrum analysis is improved,and more accurate dispersion curves are picked up.Through the adaptive weighted least squares Scholte wave dispersion inversion algorithm,the Scholte wave dispersion equation for liquid-solid media is solved,and the shear wave velocity model of the shallow sea bottom is calculated.Theoretical tests and applications of realdata have proven that this method can significantly improve the lateral resolution of converted wave data,provide high-quality data for subsequent inversion of marine multi-component oil and gas exploration data and reservoir reflection information,and contribute to the development of marine oil and gas exploration technology.展开更多
The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of...The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of standard samples for mechanical testing.This paper compared the tensile strengths obtained from Brazilian splitting tests on standard samples(with a diameter of 50 mm and a thickness of 25 mm)and micro-tensile samples(with a diameter of 50 mm and a thickness of 25 mm)of two types of granites.A power-law size effect model was established between the two sets of data,validating the reliability of the testing method.Then,miniature Brazilian splitting under real-time high-temperature,combined with X-ray diffraction(XRD)revealed temperature-dependent strength variations and microstructural damage mechanisms.The results show that:(1)The comparison error between the tensile strength obtained by the fitting model and that of the measured standard samples was less than 6%.(2)In real-time high-temperature conditions,tensile strength of granite exhibited non-monotonic behavior,increasing below 300°C before decreasing,with sharp declines at 400–500°C and 600–700°C.(3)Thermal damage stems from the differences in the high-temperature behavior of minerals,including dehydration,phase transformation,and differential expansion.展开更多
In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless...In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless access,establish intelligent connection for wide area objects,and provide intelligent services.Due to issues such as massive access,doppler shift,and limited spectrum resources in NTN,research on resource management is crucial for optimizing NTN performance.In this paper,a comprehensive survey of multi-pattern heterogeneous NTN resource management is provided.Firstly,the key technologies involved in NTN resource management is summarized.Secondly,NTN resource management is discussed from network pattern and resource pattern.The network pattern focuses on the application of different optimization methods to different network dimension communication resource management,and the resource type pattern focuses on the research and application of multi-domain resource management such as computation,cache,communication and sensing.Finally,future research directions and challenges of 6G NTN resource management are discussed.展开更多
This article summarizes recent domestic literature on the use of Huangqin(Scutellaria baicalensis)in the treatment of lung cancer.It reviews the mechanism of action of Huangqin in treating lung cancer from six aspects...This article summarizes recent domestic literature on the use of Huangqin(Scutellaria baicalensis)in the treatment of lung cancer.It reviews the mechanism of action of Huangqin in treating lung cancer from six aspects:inhibiting the growth of lung cancer cells,inducing apoptosis of lung cancer cells,inducing autophagy of lung cancer cells,inhibiting the migration of lung cancer cells,promoting the differentiation of lung cancer cells,and improving immune function.The aim is to provide a reference for the material basis and further research on the anti-inflammatory and anti-tumor efficacy of Huangqin.展开更多
Brown carbon(BrC)has attracted widespread attention because of its strong absorption of solar radiation in the ultraviolet-visible wavelength range,which causes adverse impacts on human health.Originally,BrC was a phy...Brown carbon(BrC)has attracted widespread attention because of its strong absorption of solar radiation in the ultraviolet-visible wavelength range,which causes adverse impacts on human health.Originally,BrC was a physically defined class of substances.However,current research has gradually shifted towards the identification of its chemical groups,because its light-absorbing capability,chemical properties and health effects mainly depend on the chemical composition of its chromophores.Therefore,this review mainly focuses on the chemical understanding of BrC based on chromophores,and the secondary formation mechanism of chromophores,photosensitized reactions,and human health effects of BrC were detailly summarized.Firstly,BrC chromophores are divided into five categories:nitrogen-heterocycles,nitrogen-chain,aromatic species,oligomers and sulfur-containing organic compounds.Different chromophore precursor species exhibit variations,and their formation mechanisms are also distinct.Secondly,BrC can trigger the production of secondary organic aerosol(SOA)precursors or cause SOA growth because BrC is an important component of light-absorbing particles formed during incomplete combustion of biomass and fossil fuels,potentially exerting adverse effects on human health.Finally,developing sufficiently separated methods for BrC and refining algorithms and machine learning can lead to a more effective understanding of the chemical composition of chromophores,thus enabling better evaluation of the atmospheric effects and health impacts of BrC.In all,this review provides new insights into the categories of BrC chromophores and new advance in secondary formation mechanisms,photosensitized reactions,and human health effects on the basis of chemical structures.展开更多
Osteoarthritis(OA)is a kind of joint diseases characterized by fibrosis,ulceration,and loss of articular cartilage and articular surrounding tissues caused by various factors,the main symptoms of OA include joint pain...Osteoarthritis(OA)is a kind of joint diseases characterized by fibrosis,ulceration,and loss of articular cartilage and articular surrounding tissues caused by various factors,the main symptoms of OA include joint pain,joint stiffness,and loss of joint function,and OA has the higher prevalence rate and has been listed as one of the four major disabling diseases,seriously affecting people’s lives and health.Traditional Chinese medicine(TCM)is a comprehensive science based on the theory of Yin Yang(one TCM theory,the material world is believed to be nurtured,developed,and changed under the influence of Yin and Yang)and Five Elements(The five most basic substances-wood,fire,earth,metal,and water-are considered indispensable elements that make up the world),based on TCM theory and practical experience it can play the important role in prevention,diagnosis,treatment,rehabilitation,and health care in OA,exhibit the great application potential for OA treatment.In this review,we have summarized the recent research progress in the application of TCM in OA,including an analysis of underlying mechanisms,application limitations,and potential solutions,found that the material basis and targets of the therapeutic component of TCM,the quality control and the mechanism of TCM application in OA are not very clear,which may become the application limitation of TCM in OA.We hope that this review will offer valuable insights to researchers in the field.展开更多
Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR...Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR(DIM-Li DAR)system).By designing and simulating the optical system of atmospheric turbulence detection Li DAR,the basic optical imaging accuracy has been determined.展开更多
Objective:Hyper-progression recurrence(HPR)after hepatectomy is a specific recurrence pattern associated with extremely poor prognosis in patients with hepatocellular carcinoma(HCC).This study was aimed at investigati...Objective:Hyper-progression recurrence(HPR)after hepatectomy is a specific recurrence pattern associated with extremely poor prognosis in patients with hepatocellular carcinoma(HCC).This study was aimed at investigating the probable risk factors and establishing comprehensive models for formulating clinical strategies.Methods:Overall,16,158 patients with HCC from 8 hospitals were screened,among whom 3,125 patients who underwent R0 resection were included,and divided into development(n=2,113)and validation(n=1,012)cohorts.A comprehensive study of HPR predictive models and biological features was conducted.Results:Among the 3,125 enrolled patients,506(16.19%)developed HPR.The influence of HPR on extremely poor prognosis was reflected by recurrence features,adverse effects on systemic and liver function,and limited therapeutic options.Nine variables closely associated with HPR were identified,and incorporated into nomogram and conditional inference tree models,which successfully achieved pre-and post-operative HPR risk stratification and facilitated clinical decision-making.Multi-dimensional verification also confirmed the predictive accuracy of model combinations and their reliability in clinical applications.Furthermore,biological analyses revealed that HCCs with HPR exhibited hyperactive biological processes,inactive metabolism,and immune exhaustion features,together with high MYCN/HMGA2 co-expression,thereby enhancing understanding of the molecular events leading to HPR and providing valuable knowledge for HPR management.Conclusions:HPR after hepatectomy is associated with extremely poor prognosis and requires substantial attention.We constructed comprehensive predictive models and propose a clinical strategy for guiding HPR prevention and management.展开更多
The development of blockchain is at a nascent stage.Current research on blockchain mainly focuses on a single technology,failing to reflect the correlation between the integrated technologies due to a lack of applicat...The development of blockchain is at a nascent stage.Current research on blockchain mainly focuses on a single technology,failing to reflect the correlation between the integrated technologies due to a lack of application in the real world.In this paper,according to the function classification,we divide blockchain technology into five layers:the data layer,the network layer,the consensus layer,the contract layer,and the application layer.For each layer,we elaborate on its technical principles and the latest research status.We also provide empirical cases of blockchain application.This paper summarizes the general functional modules of the blockchain to support the rapid implementation of blockchain applications.In the end,we investigate the challenges faced by blockchain technology and present the research prospects.展开更多
Benzofuran is an essential structural component found in a wide range of natural products,agrochemicals and drugs,possessing a range of biological activities.In recent years,there have been numerous reports of success...Benzofuran is an essential structural component found in a wide range of natural products,agrochemicals and drugs,possessing a range of biological activities.In recent years,there have been numerous reports of successful syntheses of benzofuran derivatives via intra-and inter-molecular cyclizations using diverse catalysts.This review gives an exhaustive and methodical survey of the procedures for making benzofurans.展开更多
This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of mi...This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of micro wire. And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire. The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.展开更多
As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application pote...As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.展开更多
By using the introduced CWO technology and its 200 L/d plant, more than 10 kinds of industrial wastewaters with high concentration in China, such as the waste liquor of coking, the black liquor of paper making, the wa...By using the introduced CWO technology and its 200 L/d plant, more than 10 kinds of industrial wastewaters with high concentration in China, such as the waste liquor of coking, the black liquor of paper making, the waste mother liquor of bio-pharmacy and so on, were treated in this test research. The results showed that the CWO technology and its equipment had a good applicability for treating the industrial wastewaters with high concentration in China. One set of CWO-20 m^3/d industrial plant, as a demonstration engineering installation of CWO technology, was independently designed, made and operated in Kunming city. During the running test, the CWO-20 m^3/d plant displayed a favorable treatment capability for the bio-degradedly difficult industrial wastewaters with high concentration. For the treatment of the waste liquor from coking and the black liquor of paper making, more than 99% of CODcr and NH3-N in the wastewater could be removed. The CWO-20 m^3/d plant could be run continuously and stably. The treated wastewater could meet the discharge standard and the treatment process with CWO technology shown up a good economic advantage.展开更多
The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the ...The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the same time,the effects of the disc speed,diameter and inter-disc gap on the internal flow field and output power of the turbine are also investigated by means of CFD(Computational Fluid Dynamics)numerical simulation,by which the pressure,velocity,and output efficiency of the internal flow field are obtained under different internal and external conditions.The highest efficiency(66.4%)is obtained for a number of nozzles equal to 4,a disk thickness of 1 mm,and a gap of 1 mm between the disks.The results of the study serve as a theoretical basis for the structural design and optimization of Tesla turbines.展开更多
Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the...Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the changes in proteins in various organs,tissues,and cells under disease conditions.The differential proteins identified through proteomics can serve as disease biomarkers and target proteins affecting health and can be used for disease diagnosis and health regulation.In this paper,the application of proteomics in the field of infl ammation in recent years was summarized,especially in the therapeutic target and mechanism of action,which opens up a new way for more effective prevention,diagnosis,and treatment of inflammation,and provides medical protection for human life and health.展开更多
Crop phenomics has rapidly progressed in recent years due to the growing need for crop functional geno-mics,digital breeding,and smart cultivation.Despite this advancement,the lack of standards for the cre-ation and u...Crop phenomics has rapidly progressed in recent years due to the growing need for crop functional geno-mics,digital breeding,and smart cultivation.Despite this advancement,the lack of standards for the cre-ation and usage of crop phenomics technology and equipment has become a bottleneck,limiting the industry’s high-quality development.This paper begins with an overview of the crop phenotyping indus-try and presents an industrial mapping of technology and equipment for big data in crop phenomics.It analyzes the necessity and current state of constructing a standard framework for crop phenotyping.Furthermore,this paper proposes the intended organizational structure and goals of the standard frame-work.It details the essentials of the standard framework in the research and development of hardware and equipment,data acquisition,and the storage and management of crop phenotyping data.Finally,it discusses promoting the construction and evaluation of the standard framework,aiming to provide ideas for developing a high-quality standard framework for crop phenotyping.展开更多
Single-atom catalysts were widely used to treat atmospheric pollution and alleviate energy crises through photocatalysis.However,how to prevent the aggregation of single atoms during the preparation and catalytic proc...Single-atom catalysts were widely used to treat atmospheric pollution and alleviate energy crises through photocatalysis.However,how to prevent the aggregation of single atoms during the preparation and catalytic processes remained a great challenge.Herein,a novel ultrathin two-dimensional porphyrin-based single-atom photocatalyst Ti-MOF(abbreviated as TMPd)obtained through a simple hydrothermal synthesis strategy was used for photocatalytic hydrogen evolution and NO removal,in which the singleatom Pd tightly anchored in the center of porphyrin to ensure single-atom Pd stable existence.Compared with most reported MOFs-based photocatalysts,the TMPd showed an excellent hydrogen evolution rate(1.32 mmol g^(-1)h^(-1))and the NO removal efficiency(62%)under visible light irradiation.Aberrationcorrected high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM)and synchrotron-radiation-based X-ray absorption fine-structure spectroscopy(XAFS)proved that pd in TMPd existed in an isolated state,and the atomic force microscope(AFM)proved the ultrathin morphology of TMPd.DFT calculations had demonstrated that single-atom Pd could serve as the active center and more effectively achieve electron transfer,indicating that single-atom Pd played a vital role in photocatalytic hydrogen evolution.In addition,a possible photocatalytic pathway of NO removal was proposed based on ESR and in-situ infrared spectra,in which the catalysts anchored with single-atom Pd could produce more active substances and more effectively oxidize NO to NO_(2)^(-)or NO_(3)^(-).The results suggested that coordinating single-atom metal species as the active site in the center of porphyrin could be a feasible strategy to obtain various ultrathin porphyrin-based single-atom photocatalysts to acquire excellent photocatalytic performance further.展开更多
基金Supported by the Youth Science and Technology Innovation Program of Xiamen Ocean and Fisheries Development Special Funds(No.23ZHZB034QCB38).
文摘This article provides an overview of the application of bionic technology in marine cruising equipment,discussing its research progress and future development trends.Marine cruising is a crucial means of gaining insights into the marine environment and conducting scientific research.However,conventional marine cruising equipment faces numerous challenges when dealing with complex and ever-changing marine environments.Bionic technology,as a means of drawing inspiration from the structure and functions of living organisms,offers new approaches and methods to address the challenges faced by marine cruising equipment and has found widespread application.The article primarily focuses on the applications and historical developments of bionic technology in propulsion methods,drag reduction,and surface antifouling.It summarizes the design principles,manufacturing techniques,and optimization methods for marine biomimetic cruising equipment.Finally,this paper analyzes the achievements,challenges,and future directions of bionic technology in marine cruising equipment.The application of bionic technology in marine cruising equipment holds vast potential for development,enabling us to better confront the challenges of marine exploration and research by drawing wisdom from nature and driving advancements in marine science.
基金Project supported by the Key R&D Projects in Hunan Province(2021SK2047,2022NK2044)Science and Technology Innovation Program of Hunan Province(2022WZ1022)Superior Youth Project of the Science Research Project of Hunan Provincial Department of Education(22B0211)。
文摘The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.
基金Education Science planning project of Jiangsu Province in 2024(Grant No:B-b/2024/01/152)2025 Jiangsu Normal University Graduate Research and Innovation Program school-level project“Research on the Construction and Desensitization Strategies of Education Sensitive Data Classification from the Perspective of Educational Ecology”。
文摘In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensitive information.How to effectively categorize and protect sensitive data has become an urgent issue in educational data security.This paper systematically researches and constructs a multi-dimensional classification framework for sensitive educational data,and discusses its security protection strategy from the aspects of identification and desensitization,aiming to provide new ideas for the security management of sensitive educational data and to help the construction of an educational data security ecosystem in the era of digital intelligence.
基金financially supported by the Scientific Research and Technology Development Project of China National Petroleum Corporation(No.2021ZG02)titled"Development of Seismic Data Processing Software for Ocean Nodes(OBN)"。
文摘In multi-component oil and gas exploration using ocean bottom nodes,converted wave data is rich in lithological and fracture information.One of the urgent problems to be solved is how to construct an accurate shear wave velocity model of the shallow sea bottom by leveraging the seismic wave information at the fluid-solid interface in the ocean,and improve the lateral resolution of marine converted wave data.Given that the dispersion characteristics of surface waves are sensitive to the S-wave velocity of subsurface media,and that Scholte surface waves,which propagate at the interface between liquid and solid media,exist in the data of marine oil and gas exploration,this paper proposes a Scholte wave inversion and modeling method based on oil and gas exploration using ocean bottom nodes.By using the method for calculating the Scholte wave dispersion spectrum based on the Bessel kernel function,the accuracy of dispersion spectrum analysis is improved,and more accurate dispersion curves are picked up.Through the adaptive weighted least squares Scholte wave dispersion inversion algorithm,the Scholte wave dispersion equation for liquid-solid media is solved,and the shear wave velocity model of the shallow sea bottom is calculated.Theoretical tests and applications of realdata have proven that this method can significantly improve the lateral resolution of converted wave data,provide high-quality data for subsequent inversion of marine multi-component oil and gas exploration data and reservoir reflection information,and contribute to the development of marine oil and gas exploration technology.
基金supported by the National Natural Science Foundation of China(Nos.52174175 and 52274078)the Program for the Scientific and Technological Innovation Team in Universities of Henan Province(No.23IRTSTHN005)。
文摘The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of standard samples for mechanical testing.This paper compared the tensile strengths obtained from Brazilian splitting tests on standard samples(with a diameter of 50 mm and a thickness of 25 mm)and micro-tensile samples(with a diameter of 50 mm and a thickness of 25 mm)of two types of granites.A power-law size effect model was established between the two sets of data,validating the reliability of the testing method.Then,miniature Brazilian splitting under real-time high-temperature,combined with X-ray diffraction(XRD)revealed temperature-dependent strength variations and microstructural damage mechanisms.The results show that:(1)The comparison error between the tensile strength obtained by the fitting model and that of the measured standard samples was less than 6%.(2)In real-time high-temperature conditions,tensile strength of granite exhibited non-monotonic behavior,increasing below 300°C before decreasing,with sharp declines at 400–500°C and 600–700°C.(3)Thermal damage stems from the differences in the high-temperature behavior of minerals,including dehydration,phase transformation,and differential expansion.
基金supported in part by the National Natural Science Foundation of China under Grant 62225103,U22B2003,U2441227,and U24A20211the Beijing Natural Science Foundation under Grant L241008+3 种基金the Defense Industrial Technology Development Program JCKY2022110C010the National Key Laboratory of Wireless Communications Foundation under Grant IFN20230201the Fundamental Research Funds for the Central Universities under Grant FRFTP-22-002C2the Xiaomi Fund of Young Scholar。
文摘In the sixth generation mobile communication(6G) system,Non-Terrestrial Networks(NTN),as a supplement to terrestrial network,can meet the requirements of wide area intelligent connection and global ubiquitous seamless access,establish intelligent connection for wide area objects,and provide intelligent services.Due to issues such as massive access,doppler shift,and limited spectrum resources in NTN,research on resource management is crucial for optimizing NTN performance.In this paper,a comprehensive survey of multi-pattern heterogeneous NTN resource management is provided.Firstly,the key technologies involved in NTN resource management is summarized.Secondly,NTN resource management is discussed from network pattern and resource pattern.The network pattern focuses on the application of different optimization methods to different network dimension communication resource management,and the resource type pattern focuses on the research and application of multi-domain resource management such as computation,cache,communication and sensing.Finally,future research directions and challenges of 6G NTN resource management are discussed.
文摘This article summarizes recent domestic literature on the use of Huangqin(Scutellaria baicalensis)in the treatment of lung cancer.It reviews the mechanism of action of Huangqin in treating lung cancer from six aspects:inhibiting the growth of lung cancer cells,inducing apoptosis of lung cancer cells,inducing autophagy of lung cancer cells,inhibiting the migration of lung cancer cells,promoting the differentiation of lung cancer cells,and improving immune function.The aim is to provide a reference for the material basis and further research on the anti-inflammatory and anti-tumor efficacy of Huangqin.
基金supported by the National Natural Science Foundation of China(Nos.42020104001,42327806 and 42177354).
文摘Brown carbon(BrC)has attracted widespread attention because of its strong absorption of solar radiation in the ultraviolet-visible wavelength range,which causes adverse impacts on human health.Originally,BrC was a physically defined class of substances.However,current research has gradually shifted towards the identification of its chemical groups,because its light-absorbing capability,chemical properties and health effects mainly depend on the chemical composition of its chromophores.Therefore,this review mainly focuses on the chemical understanding of BrC based on chromophores,and the secondary formation mechanism of chromophores,photosensitized reactions,and human health effects of BrC were detailly summarized.Firstly,BrC chromophores are divided into five categories:nitrogen-heterocycles,nitrogen-chain,aromatic species,oligomers and sulfur-containing organic compounds.Different chromophore precursor species exhibit variations,and their formation mechanisms are also distinct.Secondly,BrC can trigger the production of secondary organic aerosol(SOA)precursors or cause SOA growth because BrC is an important component of light-absorbing particles formed during incomplete combustion of biomass and fossil fuels,potentially exerting adverse effects on human health.Finally,developing sufficiently separated methods for BrC and refining algorithms and machine learning can lead to a more effective understanding of the chemical composition of chromophores,thus enabling better evaluation of the atmospheric effects and health impacts of BrC.In all,this review provides new insights into the categories of BrC chromophores and new advance in secondary formation mechanisms,photosensitized reactions,and human health effects on the basis of chemical structures.
文摘Osteoarthritis(OA)is a kind of joint diseases characterized by fibrosis,ulceration,and loss of articular cartilage and articular surrounding tissues caused by various factors,the main symptoms of OA include joint pain,joint stiffness,and loss of joint function,and OA has the higher prevalence rate and has been listed as one of the four major disabling diseases,seriously affecting people’s lives and health.Traditional Chinese medicine(TCM)is a comprehensive science based on the theory of Yin Yang(one TCM theory,the material world is believed to be nurtured,developed,and changed under the influence of Yin and Yang)and Five Elements(The five most basic substances-wood,fire,earth,metal,and water-are considered indispensable elements that make up the world),based on TCM theory and practical experience it can play the important role in prevention,diagnosis,treatment,rehabilitation,and health care in OA,exhibit the great application potential for OA treatment.In this review,we have summarized the recent research progress in the application of TCM in OA,including an analysis of underlying mechanisms,application limitations,and potential solutions,found that the material basis and targets of the therapeutic component of TCM,the quality control and the mechanism of TCM application in OA are not very clear,which may become the application limitation of TCM in OA.We hope that this review will offer valuable insights to researchers in the field.
基金jointly funded by the National Science Foundation of China(No.42405069)the University Natural Sciences Research Project of Anhui Province(Nos.2023AH052201 and 2023AH052184)+1 种基金the 2023 Talent Research Fund Project of Hefei University(No.23RC01)the Technical Development Project of Hefei University(Nos.902/22050124128,902/22050124148 and 902/22050124250)。
文摘Atmospheric turbulence is an important parameter affecting laser atmospheric transmission.This paper reports on a self-developed atmospheric turbulence detection Li DAR system(scanning differential image motion Li DAR(DIM-Li DAR)system).By designing and simulating the optical system of atmospheric turbulence detection Li DAR,the basic optical imaging accuracy has been determined.
基金supported by the National Natural Science Foundation of China(Grant Nos.NSFC 82273405,and 81972306)supported partly by the Guangxi Nature Sciences grants(Grant No.2018GXNSFAA138028)the Guangxi Medical University Training Program for Distinguished Young Scholars.
文摘Objective:Hyper-progression recurrence(HPR)after hepatectomy is a specific recurrence pattern associated with extremely poor prognosis in patients with hepatocellular carcinoma(HCC).This study was aimed at investigating the probable risk factors and establishing comprehensive models for formulating clinical strategies.Methods:Overall,16,158 patients with HCC from 8 hospitals were screened,among whom 3,125 patients who underwent R0 resection were included,and divided into development(n=2,113)and validation(n=1,012)cohorts.A comprehensive study of HPR predictive models and biological features was conducted.Results:Among the 3,125 enrolled patients,506(16.19%)developed HPR.The influence of HPR on extremely poor prognosis was reflected by recurrence features,adverse effects on systemic and liver function,and limited therapeutic options.Nine variables closely associated with HPR were identified,and incorporated into nomogram and conditional inference tree models,which successfully achieved pre-and post-operative HPR risk stratification and facilitated clinical decision-making.Multi-dimensional verification also confirmed the predictive accuracy of model combinations and their reliability in clinical applications.Furthermore,biological analyses revealed that HCCs with HPR exhibited hyperactive biological processes,inactive metabolism,and immune exhaustion features,together with high MYCN/HMGA2 co-expression,thereby enhancing understanding of the molecular events leading to HPR and providing valuable knowledge for HPR management.Conclusions:HPR after hepatectomy is associated with extremely poor prognosis and requires substantial attention.We constructed comprehensive predictive models and propose a clinical strategy for guiding HPR prevention and management.
基金Supported by the National Natural Science Foundation of China(61762049,61862033,61902162)Natural Science Foundation of Jiangxi Province(20202BABL202025,20202BABL202026,20202BAB202015)。
文摘The development of blockchain is at a nascent stage.Current research on blockchain mainly focuses on a single technology,failing to reflect the correlation between the integrated technologies due to a lack of application in the real world.In this paper,according to the function classification,we divide blockchain technology into five layers:the data layer,the network layer,the consensus layer,the contract layer,and the application layer.For each layer,we elaborate on its technical principles and the latest research status.We also provide empirical cases of blockchain application.This paper summarizes the general functional modules of the blockchain to support the rapid implementation of blockchain applications.In the end,we investigate the challenges faced by blockchain technology and present the research prospects.
文摘Benzofuran is an essential structural component found in a wide range of natural products,agrochemicals and drugs,possessing a range of biological activities.In recent years,there have been numerous reports of successful syntheses of benzofuran derivatives via intra-and inter-molecular cyclizations using diverse catalysts.This review gives an exhaustive and methodical survey of the procedures for making benzofurans.
文摘This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire, in order to solve the difficulties of low tensile strength, easy to break, and low rate of micro wire. And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire. The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.
基金Supported by Project of The Education Department of Fujian Province(JAT201227).
文摘As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.
文摘By using the introduced CWO technology and its 200 L/d plant, more than 10 kinds of industrial wastewaters with high concentration in China, such as the waste liquor of coking, the black liquor of paper making, the waste mother liquor of bio-pharmacy and so on, were treated in this test research. The results showed that the CWO technology and its equipment had a good applicability for treating the industrial wastewaters with high concentration in China. One set of CWO-20 m^3/d industrial plant, as a demonstration engineering installation of CWO technology, was independently designed, made and operated in Kunming city. During the running test, the CWO-20 m^3/d plant displayed a favorable treatment capability for the bio-degradedly difficult industrial wastewaters with high concentration. For the treatment of the waste liquor from coking and the black liquor of paper making, more than 99% of CODcr and NH3-N in the wastewater could be removed. The CWO-20 m^3/d plant could be run continuously and stably. The treated wastewater could meet the discharge standard and the treatment process with CWO technology shown up a good economic advantage.
基金the National Natural Science Foundation of China(No.51876114)Shanghai Engineering Research Center of Marine Renewable Energy(Grant No.19DZ2254800).
文摘The so-called ORC(Organic Rankine Cycle)heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery.In the present study,it is applied to a Tesla turbine.At the same time,the effects of the disc speed,diameter and inter-disc gap on the internal flow field and output power of the turbine are also investigated by means of CFD(Computational Fluid Dynamics)numerical simulation,by which the pressure,velocity,and output efficiency of the internal flow field are obtained under different internal and external conditions.The highest efficiency(66.4%)is obtained for a number of nozzles equal to 4,a disk thickness of 1 mm,and a gap of 1 mm between the disks.The results of the study serve as a theoretical basis for the structural design and optimization of Tesla turbines.
基金funded by National Key R&D Program of China(2022YFF1100300).
文摘Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the changes in proteins in various organs,tissues,and cells under disease conditions.The differential proteins identified through proteomics can serve as disease biomarkers and target proteins affecting health and can be used for disease diagnosis and health regulation.In this paper,the application of proteomics in the field of infl ammation in recent years was summarized,especially in the therapeutic target and mechanism of action,which opens up a new way for more effective prevention,diagnosis,and treatment of inflammation,and provides medical protection for human life and health.
基金supported by the National Key R&D Program of China(2022YFD2002300)the Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences(KJCX20240406)+1 种基金the National Natural Science Foundation of China(32071891)the earmarked fund(CARS-02 and CARS-054).
文摘Crop phenomics has rapidly progressed in recent years due to the growing need for crop functional geno-mics,digital breeding,and smart cultivation.Despite this advancement,the lack of standards for the cre-ation and usage of crop phenomics technology and equipment has become a bottleneck,limiting the industry’s high-quality development.This paper begins with an overview of the crop phenotyping indus-try and presents an industrial mapping of technology and equipment for big data in crop phenomics.It analyzes the necessity and current state of constructing a standard framework for crop phenotyping.Furthermore,this paper proposes the intended organizational structure and goals of the standard frame-work.It details the essentials of the standard framework in the research and development of hardware and equipment,data acquisition,and the storage and management of crop phenotyping data.Finally,it discusses promoting the construction and evaluation of the standard framework,aiming to provide ideas for developing a high-quality standard framework for crop phenotyping.
基金supported by the National Natural Science Foundation of China(Nos.22001026,21502012)the Chongqing Science and Technology Commission(Nos.CSTB2022NSCQ-MSX1308,CSTB2023NSCQ-MSX0670)+4 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZDK202300806)Graduate Innovation Program of Chongqing Technology and Business University(No.yjscxx2023–211–41)Student Development Assistance Program of Chongqing Technology and Business University(No.2021412237)Fund of National-local Joint Engineering Research Center for Road Engineering and Disaster Prevention and Reduction Technology in Mountainous Areas(No.SQDL-2021–01)Cultural Relics Protection Research Project of Chongqing Bureau of Cultural Relics(2022No.318)。
文摘Single-atom catalysts were widely used to treat atmospheric pollution and alleviate energy crises through photocatalysis.However,how to prevent the aggregation of single atoms during the preparation and catalytic processes remained a great challenge.Herein,a novel ultrathin two-dimensional porphyrin-based single-atom photocatalyst Ti-MOF(abbreviated as TMPd)obtained through a simple hydrothermal synthesis strategy was used for photocatalytic hydrogen evolution and NO removal,in which the singleatom Pd tightly anchored in the center of porphyrin to ensure single-atom Pd stable existence.Compared with most reported MOFs-based photocatalysts,the TMPd showed an excellent hydrogen evolution rate(1.32 mmol g^(-1)h^(-1))and the NO removal efficiency(62%)under visible light irradiation.Aberrationcorrected high-angle annular dark-field scanning transmission electron microscope(HAADF-STEM)and synchrotron-radiation-based X-ray absorption fine-structure spectroscopy(XAFS)proved that pd in TMPd existed in an isolated state,and the atomic force microscope(AFM)proved the ultrathin morphology of TMPd.DFT calculations had demonstrated that single-atom Pd could serve as the active center and more effectively achieve electron transfer,indicating that single-atom Pd played a vital role in photocatalytic hydrogen evolution.In addition,a possible photocatalytic pathway of NO removal was proposed based on ESR and in-situ infrared spectra,in which the catalysts anchored with single-atom Pd could produce more active substances and more effectively oxidize NO to NO_(2)^(-)or NO_(3)^(-).The results suggested that coordinating single-atom metal species as the active site in the center of porphyrin could be a feasible strategy to obtain various ultrathin porphyrin-based single-atom photocatalysts to acquire excellent photocatalytic performance further.