A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional c...A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.展开更多
The fiberglass reinforced plastic (FRP) pipelines have been used widely in oil-gas gathering and transportation. The defects of FRP pipelines would increase with the extension of service time. However, it is very di...The fiberglass reinforced plastic (FRP) pipelines have been used widely in oil-gas gathering and transportation. The defects of FRP pipelines would increase with the extension of service time. However, it is very difficult to detect the defects of FRP pipelines on-spot quickly. In this paper, a new method detecting defects for FRP pipes has been provided based on the NMR. The proton density distributions have been obtained at different depth of FRP components using single-side NMR. The experimental results show that there is a significant change of proton density distribution at the location of defects. And, these results would be useful for defects inspection of composite material component.展开更多
In this work, the influence of the dissolution of methane(CH_(4)) gas on the wax crystal of waxy crude oil and the effect on the rheology of crude oil by dissolved CH_(4) were studied comprehensively. A self-deign hig...In this work, the influence of the dissolution of methane(CH_(4)) gas on the wax crystal of waxy crude oil and the effect on the rheology of crude oil by dissolved CH_(4) were studied comprehensively. A self-deign high-pressure micro visualization device was developed to analyze wax crystals before and after gas dissolution. The crude oil from Shengli and Nanyang was tested by the device under various gas pressures. Results showed that the viscosity, maximum shear stress and equilibrium shear stress of Shengli crude oil decreased with the increasing pressure of the dissolved CH_(4). Due to the supersaturation of dissolved gas, the viscosity, maximum shear stress and equilibrium shear stress of Nanyang crude oil decreased initially and increased with the increasing pressure of dissolved CH_(4). The change in rheology of the dissolved gas crude oil can be a combined influence of gas pressure and dissolution mechanisms caused by CH_(4). Additionally, the wax precipitation point of Shengli crude oil decreased at the saturated dissolution of CH_(4), while Nanyang crude oil showed an increasing wax precipitation temperature.Notably, the wax precipitation area, number of wax particles, and average diameter of wax crystal in both crude oils gradually decreased with dissolution. However, a saturation of CH_(4) caused a small amount of precipitation of wax crystals in Nanyang crude oil, and the small wax crystals were aggregated to form the large wax crystals. The dissolution of CH_(4) gas can affect the wax crystallization process, crystallization ability, and morphology of wax crystals that resulted in significant variation in the rheology of crude oil.展开更多
The effects of extreme stray current on the anodic dissolution and passivation of X80 steel in NaHCO3 solution were investigated using measurements of polarization curves and EIS,AFM and SEM techniques.Under the inter...The effects of extreme stray current on the anodic dissolution and passivation of X80 steel in NaHCO3 solution were investigated using measurements of polarization curves and EIS,AFM and SEM techniques.Under the interference of anodic current(i=0~200 A/m2),main constituents of corrosion products of X80 steel were FeO(OH)and Fe3 O4.A double-layer film formed at i=00 A/m2,in which FeOOH was in outer and Fe3 O4 lied in inner.The formation mechanism of Fe3 O4 was confirmed and described by the electrochemical reaction in various regions on anodic potentiodynamic polarization curve.展开更多
Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to t...Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO_(2)@NH_(2)) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L^(–1), 90℃) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.展开更多
文摘A new kind of solvent for deacidification of distillate oils was introduced in this paper. After successful laboratory study this technology had been applied in commercial scale successfully. Compared to traditional caustic wash of distillate oils, this technology has a lot of merits, such as the broad range of distillates to be processed, low caustic consumption, recycle of deacidifying agent, absence of waste caustic discharge, and low equipment revamp expenses, which can have promising perspectives for exploitation and application of this technology.
文摘The fiberglass reinforced plastic (FRP) pipelines have been used widely in oil-gas gathering and transportation. The defects of FRP pipelines would increase with the extension of service time. However, it is very difficult to detect the defects of FRP pipelines on-spot quickly. In this paper, a new method detecting defects for FRP pipes has been provided based on the NMR. The proton density distributions have been obtained at different depth of FRP components using single-side NMR. The experimental results show that there is a significant change of proton density distribution at the location of defects. And, these results would be useful for defects inspection of composite material component.
基金the National Natural Science Foundation of China (51774315, 51574274)the Natural Science Found of Hebei Province (E2020203013) for the support of this work。
文摘In this work, the influence of the dissolution of methane(CH_(4)) gas on the wax crystal of waxy crude oil and the effect on the rheology of crude oil by dissolved CH_(4) were studied comprehensively. A self-deign high-pressure micro visualization device was developed to analyze wax crystals before and after gas dissolution. The crude oil from Shengli and Nanyang was tested by the device under various gas pressures. Results showed that the viscosity, maximum shear stress and equilibrium shear stress of Shengli crude oil decreased with the increasing pressure of the dissolved CH_(4). Due to the supersaturation of dissolved gas, the viscosity, maximum shear stress and equilibrium shear stress of Nanyang crude oil decreased initially and increased with the increasing pressure of dissolved CH_(4). The change in rheology of the dissolved gas crude oil can be a combined influence of gas pressure and dissolution mechanisms caused by CH_(4). Additionally, the wax precipitation point of Shengli crude oil decreased at the saturated dissolution of CH_(4), while Nanyang crude oil showed an increasing wax precipitation temperature.Notably, the wax precipitation area, number of wax particles, and average diameter of wax crystal in both crude oils gradually decreased with dissolution. However, a saturation of CH_(4) caused a small amount of precipitation of wax crystals in Nanyang crude oil, and the small wax crystals were aggregated to form the large wax crystals. The dissolution of CH_(4) gas can affect the wax crystallization process, crystallization ability, and morphology of wax crystals that resulted in significant variation in the rheology of crude oil.
文摘The effects of extreme stray current on the anodic dissolution and passivation of X80 steel in NaHCO3 solution were investigated using measurements of polarization curves and EIS,AFM and SEM techniques.Under the interference of anodic current(i=0~200 A/m2),main constituents of corrosion products of X80 steel were FeO(OH)and Fe3 O4.A double-layer film formed at i=00 A/m2,in which FeOOH was in outer and Fe3 O4 lied in inner.The formation mechanism of Fe3 O4 was confirmed and described by the electrochemical reaction in various regions on anodic potentiodynamic polarization curve.
基金funding from the National Natural Science Foundation of China(Grant No.51974344)the Natural Science Foundation of Shandong Provincial(Grant No.ZR2019MEE077)the Fundamental Research Funds for the Central Universities(Grant No.19CX02064A).
文摘Nanoparticles with high surface energy and chemical activity have drawn substantial attention in petroleum industry. Recently, Janus nanoparticles exhibited tremendous potential in enhanced oil recovery (EOR) due to their asymmetric structures and properties. In this study, a series of amphiphilic pseudo-Janus@OTAB (PJ@C18) nanoparticles with different concentrations of stearyltrimethylammoium bromide (OTAB) were successfully fabricated. The structures and properties of PJ@C18 were characterized by Fourier transform infrared spectroscopy and ζ-potential measurements. Based on the emulsification experimental results, the interaction models and the self-assembly behavior between hydrophilic nanoparticles (SiO_(2)@NH_(2)) and OTAB molecules at the oil/water interface were proposed, which was further confirmed via the measurements of the contact angle and dynamic interfacial tension. Interestingly, it was found that the change of pH value from 7.5 to 4.0 caused the type reversal of the PJ@C18-1000 stabilized Pickering emulsions. Furthermore, the PJ@C18-1000 stabilized Pickering emulsion system with excellent salt and temperature tolerances (10000 mg∙L^(–1), 90℃) significantly improved the oil recovery in the single-tube (more than 17%) and double-tube (more than 25%) sand pack model flooding tests. The findings of this study could help to better understand the construction mechanism of pseudo-Janus silica/surfactant assembly and the potential application of PJ@C18-1000 stabilized Pickering emulsions for EOR.