期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simple fabrication of superhydrophobic PLA with honeycomb-like structures for high-efficiency oil-water separation 被引量:11
1
作者 Xiaolong Wang Yamin Pan +6 位作者 Huan Yuan Meng Su Chunguang Shao Chuntai Liu Zhanhu Guo Changyu Shen Xianhu Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第2期365-368,共4页
Polylactic acid(PLA) is one of the most suitable candidates for environmental pollution treatment because of its biodegradability which will not cause secondary pollution to the environment after application.However,t... Polylactic acid(PLA) is one of the most suitable candidates for environmental pollution treatment because of its biodegradability which will not cause secondary pollution to the environment after application.However,there is still a lack of a green and facile way to prepare PLA oil-water separation materials.In this work,a water-assisted thermally induced phase separation method for the preparation of superhydrophobic PLA oil-water separation material with honeycomb-like structures is reported.The PLA material shows great ability in application and could adsorb 27.3 times oil to its own weight.In addition,it could also be applicated as a filter with excellent efficiency(50.9 m^3 m^(-2) h^(-1)). 展开更多
关键词 BIODEGRADABILITY PLA Phase SEPARATION Oil-water SEPARATION SUPERHYDROPHOBICITY
原文传递
Flexible conductive Ag nanowire/cellulose nano?bril hybrid nanopaper for strain and temperature sensing applications 被引量:16
2
作者 Rui Yin Shuaiyuan Yang +5 位作者 Qianming Li Shuaidi Zhang Hu Liu Jian Han Chuntai Liu Changyu Shen 《Science Bulletin》 SCIE EI CAS CSCD 2020年第11期899-908,M0003,共11页
With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid... With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique. The amphiphilic property of cellulose is beneficial for the homogeneous dispersion of Ag NW to construct effective electrically conductive networks. Two different types of strain sensors were designed to study their applications in strain sensing. One was the tensile strain sensor where the hybrid nanopaper was sandwiched between two thermoplastic polyurethane (TPU) films through hot compression, and special micro-crack structure was constructed through the pre-strain process to enhance the sensitivity. Interestingly, typical pre-strain dependent strain sensing behavior was observed due to different crack densities constructed under different pre-strains. As a result, it exhibited an ultralow detection limit as low as 0.2%, good reproducibility under different strains and excellent stability and durability during 500 cycles (1% strain, 0.5 mm/min). The other was the bending strain sensor where the hybrid nanopaper was adhered onto TPU film, showing stable and recoverable linearly sensing behavior towards two different bending modes (tension and compression). Importantly, the bending sensor displayed great potential for human motion and physiological signal detection. Furthermore, the hybrid nanopaper also exhibited stable and reproducible negative temperature sensing behavior when it was served as a temperature sensor. This study provides a guideline for fabricating flexible and biodegradable sensors. 展开更多
关键词 Ag nanowire Cellulose nanofibril NANOPAPER STRAIN Temperature sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部