Through quenching and tempering(QT)and quenching and partitioning(Q&P)processes,this study aimed to investigate the effects of microstructural modifications on the corrosion behavior and corrosion-assisted mechani...Through quenching and tempering(QT)and quenching and partitioning(Q&P)processes,this study aimed to investigate the effects of microstructural modifications on the corrosion behavior and corrosion-assisted mechanical degradation of medium Ni-bearing steel.The primary objective was the identification of strategies for the enhancement of the long-term lifespan and reliability of these alloys in neutral aqueous environments.Various electrochemical evaluations and microstructural characterizations were conducted to elucidate the relationship between heat treatment processes and corrosion behavior.The findings reveal that the conventional Q&P process formed partitioned austenite with a coarse size within the martensitic matrix,which led to an uneven distribution of Ni and high kernel average misorientation and resulted in an increased susceptibility to corrosion and corrosion-induced mechanical degradation.In addition,the corroded QT sample displayed preferential attacks around cementite clusters due to selective dissolution.By contrast,a slightly higher partitioning temperature,just above the martensite transformation start temperature,provided finely distributed austenite within bainite in the microstructure,which exhibited lower corrosion kinetics and reduced susceptibility to mechanical degradation in the corrosive environment.This study highlights the potential of microstructural optimization through the Q&P process with a high partitioning temperature as an effective technical strategy for achieving the superior durability and reliability of medium Ni-bearing steel alloys in neutral aqueous environments.展开更多
The acting force on the roll system of Sendzimir mill was analyzed using 3D FEM.The roll gap pressure distribution and the acting force between rolls S and O,rolls O and I,rolls O and J,rolls I and A,rolls I and B,as ...The acting force on the roll system of Sendzimir mill was analyzed using 3D FEM.The roll gap pressure distribution and the acting force between rolls S and O,rolls O and I,rolls O and J,rolls I and A,rolls I and B,as well as rolls J and B were analyzed.The results showed that the roll gap pressure mainly affected the roll surface layer,50 mm for backup roll;the roll gap pressure distribution is of double peaks among the work roll,the 1st intermediate roll(IMR),and the 2nd IMR;the maximum value of the roll gap pressure between the backup roll and the second IMR appears on the edge of the barrel of rolls;the component force presents the in-para-curve distribution.These are important for reducing the wear of rolls and the break of the backup roll and guiding for production.展开更多
High-speed rolling (HSR) is known to improve the workability of Mg alloys significantly, which makes it possible to impose a large reduction in a single pass without fracture. In the present study, dynamic recrystal...High-speed rolling (HSR) is known to improve the workability of Mg alloys significantly, which makes it possible to impose a large reduction in a single pass without fracture. In the present study, dynamic recrystallization (DRX) behavior and microstructural and textural variations of Mg alloy AZ31 dur-ing a HSR process were investigated by conducting rolling with different imposed reductions in the range of 20%-80% at a high rolling speed of 470 m/min and 400℃. High-strain-rate deformation during HSR suppresses dislocation slips but promotes twinning, which results in the formation of numer-ous twins of several types, i.e., {10-12} extension twins, {10-11} and {10-13} contraction twins, and {10-11}-{10-12} double twins. After twinning, high strain energy is accumulated in twin bands because their crystallographic orientations are favorable for basal slips, leading to subsequent DRX at the twin bands. Accordingly, twinning activation and twinning-induced DRX behavior play crucial roles in accommodating plastic deformation during HSR and in varying microstructure and texture of the high- speed-rolled (HSRed) sheets. Area fraction of fine DRXed grains formed at the twin bands increases with increasing rolling reduction, which is attributed to the combined effects of increased strain, strain rate, and deformation temperature and a decreased critical strain for DRX. Size, internal strain, and texture intensity of the DRXed grains are smaller than those of unDRXed grains. Therefore, as rolling reduction increases, average grain size, stored internal energy, microstructural inhomogeneity, and basal texture intensity of the HSRed sheets gradually decrease owing to an increase in the area fraction of the DRXed grains.展开更多
The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a f...The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis.展开更多
A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reductio...A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reduction ratio increased from 10% to 30%. Materials used for a substrate in this study are plain carbon steel (AIS11045) and ultra low carbon bainite steel. To compute the friction coefficient between the coating layer of wire and the surface of die lbr a specific lubricant, a series of finite element analyses were carried out. SEM observations were also conducted to investigate the surface defects of wire deformed. Results show that the behavior of drawing force varies with the lubricant-type at the initial stage of drawing. The powder-typed lubricant with a large particle causes the retardation of lull lubrication on the entire contact surface and the local delamination of coating layer on the wire surface. As the flow stress of a substrate increases, the delamination becomes severe.展开更多
In this study, mechanical properties improvement of equiatomic CoCrFeMnNi treated with an ultrasonic nanocrystal surface modification(UNSM) was studied. The applied UNSM treatment with static loads of 10 N, 20 N, and ...In this study, mechanical properties improvement of equiatomic CoCrFeMnNi treated with an ultrasonic nanocrystal surface modification(UNSM) was studied. The applied UNSM treatment with static loads of 10 N, 20 N, and 60 N provided a severe plastic deformation, which produced a gradient structure. The nearsurface area exhibited a high number of dislocation densities and deformation twin interaction, leading to a surface strengthening and hardness improvement of up to 112% than the deformation-free interior region. Increment of dislocation densities and deformation twin formation on the surface also enhanced the yield and ultimate tensile strength of the UNSM-treated specimens. Furthermore, the combination of hard nanocrystallites layer on the surface and ductile coarse grain in the specimen interior as a result of the UNSM treatment successfully maintained the strength–ductility balance of the CoCrFeMnNi.展开更多
Recently,there have been the increase of ship size and the development of oil and gas in arctic region.These trends have led to the requirements such as high strength,good toughness at low temperature and good weldabi...Recently,there have been the increase of ship size and the development of oil and gas in arctic region.These trends have led to the requirements such as high strength,good toughness at low temperature and good weldability.The high performance structural steels for shipbuilding and arctic offshore structure have been developed by our own micro-alloying and TMCP technologies.M-A constituent was precisely controlled in the both HAZ and base metal to get high toughness at low temperature.Also,the grain growth of austenite at HAZ was effectively suppressed by thermally stable TiN particles,leading to a good HAZ toughness.On the other hand,there has been the key issue of crack arrestability in large size container ship.The effect of joint design on crack arrestability was investigated to prevent a catastrophic failure along the block joint of hatch side coaming.A brittle crack arrest technique was developed without block joint shift,using an arrest weld in the end of hatch side coaming weld line.展开更多
Nitrogen can easily contaminate molten steel during the steelmaking process and due to the low nitrogen capacity in slag, it is difficult to remove entrapped nitrogen from liquid steel. Degassing is often done to the ...Nitrogen can easily contaminate molten steel during the steelmaking process and due to the low nitrogen capacity in slag, it is difficult to remove entrapped nitrogen from liquid steel. Degassing is often done to the steel at secondary steelmaking to lower the nitrogen content, but the control can often be kinetically limited by the steel grade and also the slag composition. Thus, a fundamental understanding of nitrogen dissolution into molten slag and metal including the rate of nitrogen dissolution can help in controlling nitrogen content in the final product.The kinetics of nitrogen dissolution in the molten calcium aluminate based slags and in molten steel with various element additions was investigated by measuring the 14N-15N isotope exchange reaction using a mass spectrometer at 1873 K.Results show that effect of elements on the rate constant of nitrogen dissolution such as Ni in Fe is relatively minimal similar to molybdenum. The surface rate constant of nitrogen dissolution in liquid Fe-10%Ni alloy was found to be 3.77×10-5 (mol/cm2·s·atm).The rate constant of nitrogen dissolution in the CaO-Al2O3-CaF2 slag was found to be wedge shaped, which decreased with increasing CaF2 to about 20 mol% followed by an increase through the rest of the CaF2 composition range. This was related to the effect of CaF2 on the structure of Al-O bonds for this slag.展开更多
In order to transmit secure messages, a quantum secure direct communication protocol based on extended three-particle GHZ state was presented, in which the extended three-particle GHZ state was used to detect eavesdro...In order to transmit secure messages, a quantum secure direct communication protocol based on extended three-particle GHZ state was presented, in which the extended three-particle GHZ state was used to detect eavesdroppers. In the security analysis, the method of the entropy theory is introduced, and three detection strategies are compared quantitatively by using the constraint between the information eavesdroppers can obtain and the interference introduced. If the eavesdroppers intend to obtain all inforrmtion, the detection rate of the original "Ping-pong" protocol is 50% ; the second protocol used two particles of EPR pair as detection particles is also 50%; while the presented protocol is 58%. At last, the security of the proposed protocol is discussed. The analysis results indicate that the protocol in this paper is more secure than the other two.展开更多
Both wear and crack due to heat checking in hot work tool steel are major failure modes.It is desirable to find amethod to lengthen the tool life while reducing manufacturing cost.This paper suggests a method to impro...Both wear and crack due to heat checking in hot work tool steel are major failure modes.It is desirable to find amethod to lengthen the tool life while reducing manufacturing cost.This paper suggests a method to improve toollife for hot work tool steel(SKD6)with crack by laser-melting process.The method has been evaluated using theimpact and fatigue test results.It is demonstrated that a repair of the crack by a laser-melting process is effectivefor life extension of the damaged tool.展开更多
AA5454-O aluminum alloy plates with thicknesses of 1.4 and 1.0 mm were friction-stir-lap-welded (FSLWed).The influences of the tool plunge depth and welding distance on surface appearance,macrostructure and mechanical...AA5454-O aluminum alloy plates with thicknesses of 1.4 and 1.0 mm were friction-stir-lap-welded (FSLWed).The influences of the tool plunge depth and welding distance on surface appearance,macrostructure and mechanical properties of the FSLWed plates were experimentally investigated.The tensile shear load of the FSLWed plates was compared with that of the adhesive-bonded plates.Defect-free FSLWed zones were successfully obtained in all the tool plunge depths and the welding distances.The FSLWed zones exhibited the relatively smooth surface morphologies.Under all the FSLWed conditions,the FSLWed zone exhibited higher average hardness than the base metal.In addition,the upper plate exhibited a higher average hardness than the lower plate,although there was no special tendency in spite of the change in the tool plunge depth and the welding distance.The maximum tensile shear load of the FSLWed plates was much higher than that of the adhesive-bonded aluminum alloy plate.Especially,under the FSLW condition of the plunge depth of 1.8 mm and the welding distance of 40 mm,the tensile shear load of the FSLWed plate reached a level about 41% greater than that of the adhesive-bonded aluminum alloy plate.In addition,the maximum tensile shear load of the FSLWed plate was increased with the increase of the welding distance.展开更多
AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of ...AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of 500 r/min.The plunge depth was ranged from 1.6 mm to 2.2 mm.The tool plunge speed did not make a remarkable effect on the surface appearance and macro-structure of the FSJed zone.The average hardness of the FSJed zone was greater than or equal to that of the base metal.However,there was no remarkable tendency in the average hardness change of the FSJed zone in spite of the variation in the tool plunge speed and tool plunge depth.The increase of the tool plunge depth resulted in the increase of the tensile shear load.However,the change of the tool plunge speed did not lead to the remarkable variation in the tensile shear load of the FSJed plates.It was noteworthy that the FSJed plate exhibited the highest tensile shear load of about 4.0 kN.展开更多
The deflection of rolls of Sendzimir mill with double AS-U-Roll was simulated by finite element method(FEM). The influences of rolling pressure, strip width and rolls-assignment on rolls deflection were analyzed. The ...The deflection of rolls of Sendzimir mill with double AS-U-Roll was simulated by finite element method(FEM). The influences of rolling pressure, strip width and rolls-assignment on rolls deflection were analyzed. The results show that the work roll deflection increases with the increase of rolling pressure and the reduction of work roll radius, but the rigid displacement of work roll slightly changes; the work roll end might appear negative displacement for the narrow strip width and high rolling pressure that might cause the contact of work rolls. The research results are significant for guiding production and theoretical analysis of the rolls system of Sendzimir mill.展开更多
Graphite, used as a carbon source in a conventional magnesia-carbon(MgO-C) refractory, was modified with an acid reagent, resulting in a negative charge on the surface of graphite, to enhance the coating efficiency of...Graphite, used as a carbon source in a conventional magnesia-carbon(MgO-C) refractory, was modified with an acid reagent, resulting in a negative charge on the surface of graphite, to enhance the coating efficiency of aluminum(Al) phase, which was compared to the pristine graphite through its dispersibity and oxidation behavior. The graphite particles with and without surface modification were added, respecticely, in an Al(NO3)3 suspension used as a coating reagent, and then filtered at room temperature. The modified graphite shows better disperbility than the pristine graphite, indicating that the coating efficiency of Al precursor is enhanced in the modified graphite. With respect to oxidation behavior, the modified graphite without the coating layer is totally reacted with oxygen at heat treatment of 900 °C in air. However, the Al-coated graphite starts to react with oxygen at heat treatment of 900 °C and fully reacted with oxygen at heat treatment of 1000 °C, showing the gray and white colors, respectively. It is verified that the Al layer is individually and uniformly formed on the surface of graphite and the oxidation resistance of graphite is enhanced owing to the increased coating efficiency of Al precursor.展开更多
Continuous steel strip casting lines in rolling miles are under active development.Due to high thermal losses the thin strip is cooling down very fast and therefore a sufficient heating system is necessary before fina...Continuous steel strip casting lines in rolling miles are under active development.Due to high thermal losses the thin strip is cooling down very fast and therefore a sufficient heating system is necessary before final rolling.Only induction heaters can realize the necessary fast heating of the strip and a good energy efEciency of heating.Because of induction heating lines for rolling mills are of extremely high power,all even small improvements in their design and operating modes have significant technical and economical effects.However,the heating lines need an optimal design of the complex induction systems and only numerical simulation is a way to solve the problem.Both two- and threedimensional numerical simulation approaches developed and applied for investigation and design of longitudinal induction heaters are described in the paper.The numerical models have been successfully used for development of modified coils allowing high efficient heating of thinner strip using the same operating frequency.Additionally electrical impedance of the modified coils has been provided on the level necessary for using the existing power supplies and matching equipment.Beside high electrical efficiency,the modified coils improve the temperature distribution over the strip width by increased heating of the strip edges.The optimized and modifies induction coils have been successfully tested in industrial line.展开更多
The strip shape in the stainless steel process has made an issue of the strip quality.The objective of the shape control is to minimize the shape deviation and to maintain symmetrical shape patterns in the lateral dir...The strip shape in the stainless steel process has made an issue of the strip quality.The objective of the shape control is to minimize the shape deviation and to maintain symmetrical shape patterns in the lateral direction.The method of the shape recognition employs the least square method.The shape deviation is controlled by the fuzzy shape controller(FSC).The experiments have been performed online for various stainless materials,thicknesses,and strip widths.The test results show very efficient performances in respect of stable target tracking and symmetrical and minimal fluctuation of the strip shape.展开更多
Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged...Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged from 100 mm/min to 900 mm/min.The defect-free welds with the very smooth surface morphology were successfully obtained,except for at the welding condition of 3000 r/min and 100 mm/min.The onion ring structure was observed in the friction-stir-welded zone (SZ) at the condition of 2000 r/min and 100 mm/min.For all the welding conditions,the grain size of the SZ was smaller than that of the base metal,and was decreased with the decrease of the tool rotation speed and with the increase of the tool traverse speed.The stir zone exhibited higher average hardness than the base metal.The decrease of the tool rotation speed and the increase of the tool traverse speed resulted in the increase in the average hardness of the SZ.The tensile strength of the FSWed plates was similar to that of the base metal,except for at the welding condition of 3000 r/min and 100 mm/min.The total elongation of the FSWed plates was lower than that of the base metal.展开更多
In order to solve the various privacy and security problems in RFID system, a new low-cost RFID mutual authentication protocol based on ID updating mechanics is proposed. In the proposed scheme, the backend server kee...In order to solve the various privacy and security problems in RFID system, a new low-cost RFID mutual authentication protocol based on ID updating mechanics is proposed. In the proposed scheme, the backend server keeps both the current ID and potential next ID for each tag, thus to solve the possible problem of de-synchronization attack in the most ID updating-based schemes. In the security analysis section, comparing several protocols in property required and attacker resistances, the comparison results show that the proposed protocol provides strong authentication and strong integrity of the transmissions and can withstand most the possible attacks that break the security of the previous schemes. In the performance evaluation section, the analysis results also indicate that, in terms of computational cost and storage requirement, the proposed scheme is safer, more efficient, more suitable for low-cost tag and more feasible in practice.展开更多
Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mech...Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mechanisms of Charpy impacted specimens were observed as twinning induced plasticity(TWIP) without any transfo rmation induced plasticity(TRIP) in all the steels.At cryogenic temperature,many twins were populated in the Cr-added steels,but,interestingly,fine ε-martensite was found in the OCr steel,satisfying the Shoji-Nishiyama(S-N) orientation relationship,{111}γ//{0002}ε and <101>γ//<1120>ε.Even though the cryogenic-temperature staking fault energies(SFEs) of the three steel were situated in the TWIP regime,the martensitic transformation was induced by Mn-and Cr-segregated bands.In the OCr steel,SFEs of low-(Mn,Cr) bands lay between the TWIP and TRIP regimes which were sensitively affected by a small change of SFE.The dynamic compressive test results well showed the relation between segregation bands and the SFEs.Effects of Cr were known as not only increasing the SFE but also promoting the carbide precipitation.In order to identify the possibility of carbide formation,a precipitation kinetics simulation was conducted,and the predicted fractions of precipitated M23C6 were negligible,0.4-1.1×10-5,even at the low cooling rate of 10℃/s.展开更多
It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residua...It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.展开更多
基金supported in part by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2022R1A2C 4001255)。
文摘Through quenching and tempering(QT)and quenching and partitioning(Q&P)processes,this study aimed to investigate the effects of microstructural modifications on the corrosion behavior and corrosion-assisted mechanical degradation of medium Ni-bearing steel.The primary objective was the identification of strategies for the enhancement of the long-term lifespan and reliability of these alloys in neutral aqueous environments.Various electrochemical evaluations and microstructural characterizations were conducted to elucidate the relationship between heat treatment processes and corrosion behavior.The findings reveal that the conventional Q&P process formed partitioned austenite with a coarse size within the martensitic matrix,which led to an uneven distribution of Ni and high kernel average misorientation and resulted in an increased susceptibility to corrosion and corrosion-induced mechanical degradation.In addition,the corroded QT sample displayed preferential attacks around cementite clusters due to selective dissolution.By contrast,a slightly higher partitioning temperature,just above the martensite transformation start temperature,provided finely distributed austenite within bainite in the microstructure,which exhibited lower corrosion kinetics and reduced susceptibility to mechanical degradation in the corrosive environment.This study highlights the potential of microstructural optimization through the Q&P process with a high partitioning temperature as an effective technical strategy for achieving the superior durability and reliability of medium Ni-bearing steel alloys in neutral aqueous environments.
基金Item Sponsored by National Natural Science Foundation of China(50534020)
文摘The acting force on the roll system of Sendzimir mill was analyzed using 3D FEM.The roll gap pressure distribution and the acting force between rolls S and O,rolls O and I,rolls O and J,rolls I and A,rolls I and B,as well as rolls J and B were analyzed.The results showed that the roll gap pressure mainly affected the roll surface layer,50 mm for backup roll;the roll gap pressure distribution is of double peaks among the work roll,the 1st intermediate roll(IMR),and the 2nd IMR;the maximum value of the roll gap pressure between the backup roll and the second IMR appears on the edge of the barrel of rolls;the component force presents the in-para-curve distribution.These are important for reducing the wear of rolls and the break of the backup roll and guiding for production.
基金supported and by the National Research Foundation of Korea(NRF) grants funded by the Korean government(MSIP,South Korea)(No.2016R1C1B2012140 and No.2017R1A4A1015628)by the Korean Institute of Industrial Technology(KITECH JA180001)
文摘High-speed rolling (HSR) is known to improve the workability of Mg alloys significantly, which makes it possible to impose a large reduction in a single pass without fracture. In the present study, dynamic recrystallization (DRX) behavior and microstructural and textural variations of Mg alloy AZ31 dur-ing a HSR process were investigated by conducting rolling with different imposed reductions in the range of 20%-80% at a high rolling speed of 470 m/min and 400℃. High-strain-rate deformation during HSR suppresses dislocation slips but promotes twinning, which results in the formation of numer-ous twins of several types, i.e., {10-12} extension twins, {10-11} and {10-13} contraction twins, and {10-11}-{10-12} double twins. After twinning, high strain energy is accumulated in twin bands because their crystallographic orientations are favorable for basal slips, leading to subsequent DRX at the twin bands. Accordingly, twinning activation and twinning-induced DRX behavior play crucial roles in accommodating plastic deformation during HSR and in varying microstructure and texture of the high- speed-rolled (HSRed) sheets. Area fraction of fine DRXed grains formed at the twin bands increases with increasing rolling reduction, which is attributed to the combined effects of increased strain, strain rate, and deformation temperature and a decreased critical strain for DRX. Size, internal strain, and texture intensity of the DRXed grains are smaller than those of unDRXed grains. Therefore, as rolling reduction increases, average grain size, stored internal energy, microstructural inhomogeneity, and basal texture intensity of the HSRed sheets gradually decrease owing to an increase in the area fraction of the DRXed grains.
基金supported by grants-in-aid for the National Core Research Center Program from MEST/KOSEF
文摘The friction coefficient between tube and die in guide zone of tube hydroforming was obtained. In hydroforming, the tube is expanded by an internal pressure against the tool wall. By pushing the tube through tool, a friction force at the contact surface between the tube and the tool occurs. In guiding zone, the friction coefficients between tube and die can be estimated from the measured axial feeding forces. In expansion zone, the friction coefficients between tube and die can be evaluated from the measured geometries of expanded tubes and FE analysis.
基金supported by research funds from Dong-A University, Korea
文摘A pilot wire drawing machine as well as wire end-pointing roller was developed. Using these machines, a wire drawing test for four different coating materials and two different lubricants was performed as the reduction ratio increased from 10% to 30%. Materials used for a substrate in this study are plain carbon steel (AIS11045) and ultra low carbon bainite steel. To compute the friction coefficient between the coating layer of wire and the surface of die lbr a specific lubricant, a series of finite element analyses were carried out. SEM observations were also conducted to investigate the surface defects of wire deformed. Results show that the behavior of drawing force varies with the lubricant-type at the initial stage of drawing. The powder-typed lubricant with a large particle causes the retardation of lull lubrication on the entire contact surface and the local delamination of coating layer on the wire surface. As the flow stress of a substrate increases, the delamination becomes severe.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant number NRF2019R1A2C1088535)supported by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICTFuture Planning (Grant number 2009-0082580)。
文摘In this study, mechanical properties improvement of equiatomic CoCrFeMnNi treated with an ultrasonic nanocrystal surface modification(UNSM) was studied. The applied UNSM treatment with static loads of 10 N, 20 N, and 60 N provided a severe plastic deformation, which produced a gradient structure. The nearsurface area exhibited a high number of dislocation densities and deformation twin interaction, leading to a surface strengthening and hardness improvement of up to 112% than the deformation-free interior region. Increment of dislocation densities and deformation twin formation on the surface also enhanced the yield and ultimate tensile strength of the UNSM-treated specimens. Furthermore, the combination of hard nanocrystallites layer on the surface and ductile coarse grain in the specimen interior as a result of the UNSM treatment successfully maintained the strength–ductility balance of the CoCrFeMnNi.
文摘Recently,there have been the increase of ship size and the development of oil and gas in arctic region.These trends have led to the requirements such as high strength,good toughness at low temperature and good weldability.The high performance structural steels for shipbuilding and arctic offshore structure have been developed by our own micro-alloying and TMCP technologies.M-A constituent was precisely controlled in the both HAZ and base metal to get high toughness at low temperature.Also,the grain growth of austenite at HAZ was effectively suppressed by thermally stable TiN particles,leading to a good HAZ toughness.On the other hand,there has been the key issue of crack arrestability in large size container ship.The effect of joint design on crack arrestability was investigated to prevent a catastrophic failure along the block joint of hatch side coaming.A brittle crack arrest technique was developed without block joint shift,using an arrest weld in the end of hatch side coaming weld line.
文摘Nitrogen can easily contaminate molten steel during the steelmaking process and due to the low nitrogen capacity in slag, it is difficult to remove entrapped nitrogen from liquid steel. Degassing is often done to the steel at secondary steelmaking to lower the nitrogen content, but the control can often be kinetically limited by the steel grade and also the slag composition. Thus, a fundamental understanding of nitrogen dissolution into molten slag and metal including the rate of nitrogen dissolution can help in controlling nitrogen content in the final product.The kinetics of nitrogen dissolution in the molten calcium aluminate based slags and in molten steel with various element additions was investigated by measuring the 14N-15N isotope exchange reaction using a mass spectrometer at 1873 K.Results show that effect of elements on the rate constant of nitrogen dissolution such as Ni in Fe is relatively minimal similar to molybdenum. The surface rate constant of nitrogen dissolution in liquid Fe-10%Ni alloy was found to be 3.77×10-5 (mol/cm2·s·atm).The rate constant of nitrogen dissolution in the CaO-Al2O3-CaF2 slag was found to be wedge shaped, which decreased with increasing CaF2 to about 20 mol% followed by an increase through the rest of the CaF2 composition range. This was related to the effect of CaF2 on the structure of Al-O bonds for this slag.
基金Acknowledgements The project was supported by the Specialized Research Found for the Doctoral Program of Higher Education of China under Grant No. 20060013007 the National Natural Science Foundation of Beijing under Caant No. 4092029 and the National Natural Science Foundation of China under Grant No. 61100205, No. 60873001.
文摘In order to transmit secure messages, a quantum secure direct communication protocol based on extended three-particle GHZ state was presented, in which the extended three-particle GHZ state was used to detect eavesdroppers. In the security analysis, the method of the entropy theory is introduced, and three detection strategies are compared quantitatively by using the constraint between the information eavesdroppers can obtain and the interference introduced. If the eavesdroppers intend to obtain all inforrmtion, the detection rate of the original "Ping-pong" protocol is 50% ; the second protocol used two particles of EPR pair as detection particles is also 50%; while the presented protocol is 58%. At last, the security of the proposed protocol is discussed. The analysis results indicate that the protocol in this paper is more secure than the other two.
文摘Both wear and crack due to heat checking in hot work tool steel are major failure modes.It is desirable to find amethod to lengthen the tool life while reducing manufacturing cost.This paper suggests a method to improve toollife for hot work tool steel(SKD6)with crack by laser-melting process.The method has been evaluated using theimpact and fatigue test results.It is demonstrated that a repair of the crack by a laser-melting process is effectivefor life extension of the damaged tool.
基金financially supported by the Ministry of Education,Science Technology(MEST)and National Research Foundation of Korea(NRF)through the Human Resource Training Project for Regional Innovationby the development program of local science park funded by the ULSAN Metropolitan City and the MEST(Ministry of Education,Science and Technology)
文摘AA5454-O aluminum alloy plates with thicknesses of 1.4 and 1.0 mm were friction-stir-lap-welded (FSLWed).The influences of the tool plunge depth and welding distance on surface appearance,macrostructure and mechanical properties of the FSLWed plates were experimentally investigated.The tensile shear load of the FSLWed plates was compared with that of the adhesive-bonded plates.Defect-free FSLWed zones were successfully obtained in all the tool plunge depths and the welding distances.The FSLWed zones exhibited the relatively smooth surface morphologies.Under all the FSLWed conditions,the FSLWed zone exhibited higher average hardness than the base metal.In addition,the upper plate exhibited a higher average hardness than the lower plate,although there was no special tendency in spite of the change in the tool plunge depth and the welding distance.The maximum tensile shear load of the FSLWed plates was much higher than that of the adhesive-bonded aluminum alloy plate.Especially,under the FSLW condition of the plunge depth of 1.8 mm and the welding distance of 40 mm,the tensile shear load of the FSLWed plate reached a level about 41% greater than that of the adhesive-bonded aluminum alloy plate.In addition,the maximum tensile shear load of the FSLWed plate was increased with the increase of the welding distance.
基金financially supported by the Ministry of Education,Science Technology(MEST)and National Research Foundation of Korea(NRF)through the Human Resource Training Project for Regional Innovationby the development program of local science park funded by the ULSAN Metropolitan City and the Ministry of Education,Science and Technology(MEST)
文摘AA5454-O aluminum alloy plates with the thicknesses of 1.4 and 1.0 mm were friction-spot-joined (FSJed).The plunge speed of the joining tool was changed in a range of 100 500 mm/min under a constant rotation speed of 500 r/min.The plunge depth was ranged from 1.6 mm to 2.2 mm.The tool plunge speed did not make a remarkable effect on the surface appearance and macro-structure of the FSJed zone.The average hardness of the FSJed zone was greater than or equal to that of the base metal.However,there was no remarkable tendency in the average hardness change of the FSJed zone in spite of the variation in the tool plunge speed and tool plunge depth.The increase of the tool plunge depth resulted in the increase of the tensile shear load.However,the change of the tool plunge speed did not lead to the remarkable variation in the tensile shear load of the FSJed plates.It was noteworthy that the FSJed plate exhibited the highest tensile shear load of about 4.0 kN.
基金Project(50534020) supported by the National Natural Science Foundation of China
文摘The deflection of rolls of Sendzimir mill with double AS-U-Roll was simulated by finite element method(FEM). The influences of rolling pressure, strip width and rolls-assignment on rolls deflection were analyzed. The results show that the work roll deflection increases with the increase of rolling pressure and the reduction of work roll radius, but the rigid displacement of work roll slightly changes; the work roll end might appear negative displacement for the narrow strip width and high rolling pressure that might cause the contact of work rolls. The research results are significant for guiding production and theoretical analysis of the rolls system of Sendzimir mill.
基金Project(2011-0030058) supported by the National Research Foundation of Korea(NRF)Project(20134030200220) supported by the Human Resources Development Program of the Korea Institute of Energy Technology Evaluation,Korea+1 种基金Project supported by the Planning (KETEP) Grant Funded by the Korea Government Ministry of Trade,Industry and Energy and POSCO 2012,KoreaProject(10043795) supported by the Technology Innovation Program of the Ministry of Knowledge Economy Korea
文摘Graphite, used as a carbon source in a conventional magnesia-carbon(MgO-C) refractory, was modified with an acid reagent, resulting in a negative charge on the surface of graphite, to enhance the coating efficiency of aluminum(Al) phase, which was compared to the pristine graphite through its dispersibity and oxidation behavior. The graphite particles with and without surface modification were added, respecticely, in an Al(NO3)3 suspension used as a coating reagent, and then filtered at room temperature. The modified graphite shows better disperbility than the pristine graphite, indicating that the coating efficiency of Al precursor is enhanced in the modified graphite. With respect to oxidation behavior, the modified graphite without the coating layer is totally reacted with oxygen at heat treatment of 900 °C in air. However, the Al-coated graphite starts to react with oxygen at heat treatment of 900 °C and fully reacted with oxygen at heat treatment of 1000 °C, showing the gray and white colors, respectively. It is verified that the Al layer is individually and uniformly formed on the surface of graphite and the oxidation resistance of graphite is enhanced owing to the increased coating efficiency of Al precursor.
文摘Continuous steel strip casting lines in rolling miles are under active development.Due to high thermal losses the thin strip is cooling down very fast and therefore a sufficient heating system is necessary before final rolling.Only induction heaters can realize the necessary fast heating of the strip and a good energy efEciency of heating.Because of induction heating lines for rolling mills are of extremely high power,all even small improvements in their design and operating modes have significant technical and economical effects.However,the heating lines need an optimal design of the complex induction systems and only numerical simulation is a way to solve the problem.Both two- and threedimensional numerical simulation approaches developed and applied for investigation and design of longitudinal induction heaters are described in the paper.The numerical models have been successfully used for development of modified coils allowing high efficient heating of thinner strip using the same operating frequency.Additionally electrical impedance of the modified coils has been provided on the level necessary for using the existing power supplies and matching equipment.Beside high electrical efficiency,the modified coils improve the temperature distribution over the strip width by increased heating of the strip edges.The optimized and modifies induction coils have been successfully tested in industrial line.
文摘The strip shape in the stainless steel process has made an issue of the strip quality.The objective of the shape control is to minimize the shape deviation and to maintain symmetrical shape patterns in the lateral direction.The method of the shape recognition employs the least square method.The shape deviation is controlled by the fuzzy shape controller(FSC).The experiments have been performed online for various stainless materials,thicknesses,and strip widths.The test results show very efficient performances in respect of stable target tracking and symmetrical and minimal fluctuation of the strip shape.
基金financially supported by the Ministry of Education,Science Technology(MEST)and National Research Foundation of Korea(NRF)through the Human Resource Training Project for Regional Innovationby the development program of local science park funded by the ULSAN Metropolitan City and the Ministry of Education,Science and Technology(MEST)
文摘Friction stir butt welding (FSW) between A5052-O aluminum alloy plates with a thickness of 2 mm was performed.The rotation speeds of the welding tool were 2000 and 3000 r/min,respectively.The traverse speed was ranged from 100 mm/min to 900 mm/min.The defect-free welds with the very smooth surface morphology were successfully obtained,except for at the welding condition of 3000 r/min and 100 mm/min.The onion ring structure was observed in the friction-stir-welded zone (SZ) at the condition of 2000 r/min and 100 mm/min.For all the welding conditions,the grain size of the SZ was smaller than that of the base metal,and was decreased with the decrease of the tool rotation speed and with the increase of the tool traverse speed.The stir zone exhibited higher average hardness than the base metal.The decrease of the tool rotation speed and the increase of the tool traverse speed resulted in the increase in the average hardness of the SZ.The tensile strength of the FSWed plates was similar to that of the base metal,except for at the welding condition of 3000 r/min and 100 mm/min.The total elongation of the FSWed plates was lower than that of the base metal.
基金supported by National Natural Science Foundation of China under Grant No. 61100205Foundation of China Information Technology Security Evaluation Center under Grant No. CNITSEC-KY-0910-019/5
文摘In order to solve the various privacy and security problems in RFID system, a new low-cost RFID mutual authentication protocol based on ID updating mechanics is proposed. In the proposed scheme, the backend server keeps both the current ID and potential next ID for each tag, thus to solve the possible problem of de-synchronization attack in the most ID updating-based schemes. In the security analysis section, comparing several protocols in property required and attacker resistances, the comparison results show that the proposed protocol provides strong authentication and strong integrity of the transmissions and can withstand most the possible attacks that break the security of the previous schemes. In the performance evaluation section, the analysis results also indicate that, in terms of computational cost and storage requirement, the proposed scheme is safer, more efficient, more suitable for low-cost tag and more feasible in practice.
基金supported financially by the Korea University Grant for the eighth author, the Ministry of Knowledge Economy (No. 10044574-2013-45)Brain Korea 21 Plus Project for Center for Creative Industrial materialsKorea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (No. P0002020, The Competency Development Program for Industry Specialist)。
文摘Effects of Cr addition(0,3,and 6 wt%) on Charpy impact properties of Fe-C-Mn-Cr-based steels were studied by conducting dynamic compression tests at room and cryogenic temperatures.At room temperature,deformation mechanisms of Charpy impacted specimens were observed as twinning induced plasticity(TWIP) without any transfo rmation induced plasticity(TRIP) in all the steels.At cryogenic temperature,many twins were populated in the Cr-added steels,but,interestingly,fine ε-martensite was found in the OCr steel,satisfying the Shoji-Nishiyama(S-N) orientation relationship,{111}γ//{0002}ε and <101>γ//<1120>ε.Even though the cryogenic-temperature staking fault energies(SFEs) of the three steel were situated in the TWIP regime,the martensitic transformation was induced by Mn-and Cr-segregated bands.In the OCr steel,SFEs of low-(Mn,Cr) bands lay between the TWIP and TRIP regimes which were sensitively affected by a small change of SFE.The dynamic compressive test results well showed the relation between segregation bands and the SFEs.Effects of Cr were known as not only increasing the SFE but also promoting the carbide precipitation.In order to identify the possibility of carbide formation,a precipitation kinetics simulation was conducted,and the predicted fractions of precipitated M23C6 were negligible,0.4-1.1×10-5,even at the low cooling rate of 10℃/s.
文摘It is known that one of the causes of pitting corrosion of copper tubes is residual carbon on the inner surface. It was confirmed that type I” pitting corrosion of the copper tube is suppressed by keeping the residual carbon amount at 2 mg/m<sup>2</sup> or less, which is lower than that of the type I’ pitting corrosion, or by removing the fine particles that are the corrosion product of galvanized steel pipes. The developed water treatment chemical was evaluated using three types of copper tubes with residual carbon amounts of 0 mg/m<sup>2</sup>, 0.5 mg/m<sup>2</sup>, and 6.1 mg/m<sup>2</sup>. The evaluation was conducted for three months in an open-circulation cooling water system and compared with the current water treatment chemical. Under the current water treatment chemical conditions, only the copper tube with a residual carbon amount of 6.1 mg/m<sup>2</sup> showed a significant increase in the natural corrosion potential after two weeks, and pitting corrosion occurred. No pitting corrosion and no increase in the natural corrosion potential were observed in any of the copper tubes that were treated with the developed water treatment chemical. In addition, the polarization curve was measured using the cooling water from this field test, and the anodic polarization of two cooling waters was compared. For copper tubes with a large amount of residual carbon, the current density near 0 mV vs. Ag/AgCl electrode (SSE) increased when the developed water treatment chemical was added.