As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making ...Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy.展开更多
Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate becau...Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs.展开更多
The emergence of two-dimensional nanomaterials,especially MXene,significantly overcomes the limitations of flexible pressure sensors regarding their sensing abilities,mechanical properties,and electromagnetic shieldin...The emergence of two-dimensional nanomaterials,especially MXene,significantly overcomes the limitations of flexible pressure sensors regarding their sensing abilities,mechanical properties,and electromagnetic shielding effectiveness.This advancement underscores their great potential for use in wearable and medical monitoring devices.However,single-layer MXene is highly prone to oxidation when exposed to air and tends to stack between layers.Combining MXene with other functional materials to create heterojunction structures effectively addresses the stacking problem while also providing the resulting composites with excellent electrical conductivity,mechanical flexibility,and electromagnetic shielding capabilities,which are essential for enhancing sensor performance.This review systematically outlines various microstructural designs and improvement strategies aimed at boosting the sensing efficiency of different flexible pressure sensors based on MXene.It offers a comprehensive analysis of their significance in medical monitoring,anticipates future challenges and opportunities,and serves as an important reference for advancing precision and personalized approaches in medical monitoring.展开更多
Exosomes derived from bone mesenchymal stem cells(BMSCs)show promising potential for treating bone defects.However,their clinical application is hindered by low yield and insufficient repair ability.Three-dimensional(...Exosomes derived from bone mesenchymal stem cells(BMSCs)show promising potential for treating bone defects.However,their clinical application is hindered by low yield and insufficient repair ability.Three-dimensional(3D)mechanical stimulation has been a well-known method for enhancing exosome secretion;however,the traditional stimulation process is always achieved by controlling the displacement of manipulators,which may induce uneven loading distribution and degradation of stimulation strength.Here,we propose a micro-stretching manipulator that automatically controls the stretching force applied to gelatin methacryloyl(GelMA)/hyaluronic acid methacryloyl(HAMA)hybrid hydrogel sheets containing BMSCs within an incubator.To ensure the structural stability of the sheets after long-term stretching,the mixing ratio between GelMA and HAMA was optimized according to the mechanical property response of the sheets to cyclical loading.Subsequently,force-controlled mechanical loading was applied to the BMSC-laden sheets to produce exosomes.Compared with displacement control,force-controlled loading provides a more stable force stimulation,thereby enhancing exosome secretion.Furthermore,continuously stimulated exosomes exhibited a stronger capacity for promoting osteogenic differentiation of BMSCs and facilitating the repair of bone defects in a rat model.These findings suggest that force-controlled loading of cell-laden hydrogels offers a novel approach for the production of BMSC-derived exosomes and their application in bone repair.展开更多
Pre-stretching and annealing treatments were conducted on twin roll cast Mg-2Al-1Zn-1Ca(AZX211,in wt.%)plates with a rare earth-like texture.Varying amounts of deformation were applied along the rolling direction(RD)a...Pre-stretching and annealing treatments were conducted on twin roll cast Mg-2Al-1Zn-1Ca(AZX211,in wt.%)plates with a rare earth-like texture.Varying amounts of deformation were applied along the rolling direction(RD)and transverse direction(TD)of AZX211 alloy in order to modify its mechanical proper-ties at room temperature.The results demonstrate that pre-stretching treatment effectively enhances the yield strength(YS),especially along the RD.The strengthening mechanism is attributed to the production of a large number of dislocations and sub-grain boundaries,but the work-hardening ability of the plate will be greatly weakened.Additionally,annealing treatment substantially improves the plasticity and in-plane anisotropy and restores the work-hardening ability.The notable distinction in the pre-stretching process between different directions lies in the underlying deformation mechanism.In case of RD,de-formation is predominantly governed by the slip mechanism of{0002}{11−20}basal slip and{10−10}{11−20}prismatic slip,while along the TD,deformation is primarily controlled by{0002}{11−20}basal slip without significant twinning deformation.When a 6%pre-stretching is conducted,the initial rare earth-like texture of the sample transforms into a symmetrically distributed double-peak basal texture,accompanied by grain refinement.This texture transformation is chiefly due to the dominance of{0002}{11−20}basal slip-driven deformation.Moreover,the annealed sample maintains a strong basal texture,owing to strain-induced recrystallization.展开更多
Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 11,November 2024,Page 2498 https://doi.org/10.1007/s12613-024-2847-2 In this article,the fund number in the acknowledgements has b...Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 11,November 2024,Page 2498 https://doi.org/10.1007/s12613-024-2847-2 In this article,the fund number in the acknowledgements has been erroneously given as the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A151511006)It should be as follows:the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515110061).展开更多
Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelia...Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelial cells(HPAEpiCs).Salvianolic acid A(SAA),a water-soluble polyphenol extracted from Salvia miltiorrhiza(Danshen),possesses well-documented antioxidant and anti-inflammatory activities.Nevertheless,its potential to counteract SiNP-induced inflammatory responses in the lung has not been thoroughly explored.Objective:This study aimed to evaluate the protective role and mechanistic actions of SAA against SiNP-triggered inflammation in both cellular and animal models.Methods:HPAEpiCs were pre-incubated with SAA prior to SiNP exposure to investigate changes in COX-2 expression and prostaglandin E2(PGE2)secretion.A murine model of SiNP-induced lung inflammation was used for in vivo validation.Key inflammatory signaling proteins,including c-Src,PKCα,p42/p44MAPK,and NF-κB p65,were analyzed for phosphorylation status.NF-κB promoter activity was also assessed.Pharmacological inhibitors and siRNA-mediated silencing were employed to verify the signaling cascade responsible for COX-2 regulation.Results:SAA treatment markedly suppressed SiNP-induced upregulation of COX-2 and PGE2 in bothHPAEpiCs andmouse lung tissues.SAA also reduced the activation(phosphorylation)of c-Src,PKCα,p42/p44 MAPK,and NF-κB p65,alongside diminishing NF-κB transcriptional activity.Functional studies using inhibitors and gene silencing further supported the involvement of these pathways inmediating the observed anti-inflammatory effect.Conclusion:By concurrently targeting several upstream pro-inflammatory signaling pathways,SAA demonstrates robust potential in alleviating SiNP-induced lung inflammation.These results highlight SAA as a promising candidate for therapeutic intervention in environmentally triggered respiratory conditions.展开更多
The weak corrosion resistance of magnesium and its alloys greatly limited the industrial application.Though functional self-healing coatings have been proposed as countermeasures,repeated damages on coatings under pra...The weak corrosion resistance of magnesium and its alloys greatly limited the industrial application.Though functional self-healing coatings have been proposed as countermeasures,repeated damages on coatings under practical installation and complex external environments could require self-adaptive cor-rosion protection against multiple abrasions.In this study,an ultra-high corrosion-resistant Mg-1Zn-1Sc(wt.%)alloy with a corrosion rate of 0.087 mm/y has been designed and prepared,which has fine grains and uniform structure of a nano-scale ScZn phase with low potential.A unique and dense corrosion prod-uct film with a three-layered structure was found and studied on Mg-1Zn-1Sc alloy,providing excellent corrosion protection.In addition,the formation and protection mechanisms of the three-layered corrosion product film on Mg-1Zn-1Sc alloy have been discussed and proposed.The growth behavior of protective corrosion product film could be driven by the synergy of Sc and Zn elements.Furthermore,with the in-crease of Sc content,the strength,plasticity,and corrosion resistance of Mg-1Zn-x Sc(x=0,0.2,0.6,1.0,in wt.%)alloys increased simultaneously.The high corrosion resistance and moderate mechanical perfor-mance qualify Mg-1Zn-1Sc alloy as a promising candidate for diverse industrial applications.展开更多
Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study...Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study,using PacBio,Illumina,10×Genomics and highthroughput chromosome conformation capture(Hi-C)sequencing technologies,a high-quality chromosome-level reference genome for J.sambac was obtained,exploiting a double-petal phenotype cultivar‘Shuangbanmoli’(JSSB).The results showed that the final assembled genome of JSSB is 580.33 Mb in size(contig N50=1.05 Mb;scaffold N50=45.07 Mb)with a total of 39618 predicted protein-coding genes.Our analyses revealed that the JSSB genome has undergone an ancient whole-genome duplication(WGD)event at 91.68 million years ago(Mya).It was estimated that J.sambac diverged from the lineage leading to Olea europaea and Osmanthus fragrans about 28.8 Mya.On the basis of a combination of genomic,transcriptomic and metabolomic analyses,a range of floral scent volatiles and genes were identified involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways.The results provide new insights into the molecular mechanism of its fragrance biosynthesis in jasmine.展开更多
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi...Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.展开更多
The utilization of perovskite oxide materials as catalysts for the photodegradation of organic pollutants in water is a promising and rapidly advancing field.In this study,a series of La_(1−x)Ba_(x)CoO_(3)(x=0.2,0.3,0...The utilization of perovskite oxide materials as catalysts for the photodegradation of organic pollutants in water is a promising and rapidly advancing field.In this study,a series of La_(1−x)Ba_(x)CoO_(3)(x=0.2,0.3,0.4,0.5,0.6)catalysts with varying Ba doping ratios were synthesized using the citric acid complexation-hydrothermal synthesis combined method for the degradation of phenol under visible light irradiation.Among the synthesized catalysts,La_(0.5)Ba_(0.5)CoO_(3) exhibited the highest photocatalytic activity.In addition,the photocatalytic mechanism for La_(0.5)Ba_(0.5)CoO_(3) perovskite degradation of phenol was also discussed.The synthesized catalysts were characterized using XRD,SEM,FT-IR,XPS,MPMS and other characterization techniques.The results revealed that the diffraction peak intensity of La_(1−x)Ba_(x)CoO_(3) increased with higher Ba doping ratios,and the La_(0.4)Ba_(0.6)CoO_(3) exhibited the strongest diffraction peaks.The catalyst particle sizes ranged from 10 to 50 nm,and the specific surface area decreased with increasing Ba content.Additionally,the paramagnetic properties of La_(0.5)Ba_(0.5)CoO_(3) were similar to that of La_(0.4)Ba_(0.6)CoO_(3).The experimental results suggested that the incorporation of Ba could significantly improve the catalytic performance of La_(1−x)Ba_(x)CoO_(3) perovskites,promote electron transfer and favor to the generation of hydroxyl radicals(•OH),leading to the efficiently degradation of phenol.展开更多
In the development of 3D conductive frameworks for lithium metal anode(LMA),two models have been proposed:top growth model and bottom-up growth model.However,Li tends to accumulate on the top of these 3D frameworks wi...In the development of 3D conductive frameworks for lithium metal anode(LMA),two models have been proposed:top growth model and bottom-up growth model.However,Li tends to accumulate on the top of these 3D frameworks with homogenous lithiophilicity(top growth)and Li dendrite still forms.To address this issue,some researchers have focused on developing 3D frameworks with gradient lithio-philicity,which realized bottom-up growth of Li.Nevertheless,partial Li nucleation sites on the top of these frameworks were missed.Inspired by the two models talked above,this work firstly proposed a novel intermittent lithiophilic model for lithium deposition.To demonstrate the feasibility of this model,a bimetallic metal-organic frameworks derived ZnMn_(2)O_(4)-MnO nanoparticles were grown on carbon cloth for LMA.It can cycle stably under ultra-high current and areal capacity(10 mA/cm^(2),10 mAh/cm^(2)).The in-situ optical microscopy(OM)was conducted to observe the Li deposition behavior,no dendrite was found during 80 h in ester-based electrolyte while the pure Li only cycled for 2h.What is more,it can also be well-coupled with LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and solid-state electrolyte,which further prove the advantages of the intermittent model for the development of LMAs with high safety and high energy density.展开更多
Malignant obstruction makes gallbladder cancer have a high mortality rate.Nickel-titanium alloy(nitinol)stents are commonly used as a local intervention to maximize patient survival time,but the stents lack antitumor ...Malignant obstruction makes gallbladder cancer have a high mortality rate.Nickel-titanium alloy(nitinol)stents are commonly used as a local intervention to maximize patient survival time,but the stents lack antitumor and antibacterial capacity and are vulnerable to secondary obstruction.Arsenic-based drugs show good therapeutic promise against gallbladder cancer.To meet clinical needs.the layered double hydroxides(LDHs)film is constructed on the nitinol,whose arsenite loading amounts rose by 60%after simple heat treatment compared with the conventional anion-exchange strategy.In addition,calcination promotes the dissolution of nickel ions from the LDHs lattice,resulting in a powerful synergistic killing effect on tumor cells together with the released arsenic.More importantly,the calcined arsenic-loaded LDHs are sensitive to the acidic microenvironment of tumor tissues,which presents a much lower arsenic and nickel release amount in the normal tissues,guaranteeing its biosafety.Meanwhile,the vertically sharp LDHs nanosheets can synergize with arsenic to achieve effective physical cleavage and chemical killing of adherent and planktonic bacteria.In short,we attempt to use arsenic drugs for local interventions and reasonably avoid their toxic side effects,which provides a new design idea for nitinol stents applied in the treatment of gallbladder cancer.展开更多
In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum micr...In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum microhardness values of central and edge from the composites with 1 wt.%MWCNTs reached HV 130.0 and HV 363.5,which were 43.9%and 39.5%higher than those of the original samples,respectively.With the same content of MWCNTs,its electrical conductivity achieved 3.42×10^(7) S/m,which was increased by 78.1%compared with that of original samples.The synergistic improvement of mechanical and electrical properties is attributed to the obtained microstructure with increased homogenization and refinement,as well as improved interfacial bonding and reduced porosity.The strengthening mechanisms include dispersion and refinement strengthening for mechanical properties,as well as reduced electron scattering for electrical properties.展开更多
During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties durin...During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties during friction stir lap welding(FSLW).This study focuses on investigating the effects of rotation rate,multipass welding,and cooling methods on lap defect formation,microstructural evolution,and mechanical properties.Hook defects were eliminated by decreasing welding speed,applying two-pass FLSW with a small welding tool,and introducing additional water cooling,thus leading to a remarkable increase in effective sheet thickness and lap width.This above strategy yielded defect-free joints with an ultrafine-grained microstructure and increased tensile shear force from 298 to 551 N/mm.The fracture behavior of FSLW joints was systematically studied,and a fracture factor of lap joints was proposed to predict their fracture mode.By reducing the rotation rate,using two-pass welding,and employing additional water cooling strategies,an enlarged,strengthened,and defect-free lap zone with refined ultrafine grains was achieved with a quality comparable to that of lap welds based on 7xxx Al alloys.Importantly,this study provides a valuable FSLW method for eliminating hook defects and improving joint performance.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
This paper proposes a deformation evolution and perceptual prediction methodology for additive manufacturing of lightweight composite driven by hybrid digital twins(HDT).In order to improve manufacturing quality of ir...This paper proposes a deformation evolution and perceptual prediction methodology for additive manufacturing of lightweight composite driven by hybrid digital twins(HDT).In order to improve manufacturing quality of irregular lightweight composite through boosting conceptual design in aeronautic and aerospace engineering,the HDT meaning hybridization of physical and digital domains,including deformation and energy efficiency can be built,where the essential parameters can be perceptually predicted in advance,by virtue of the fusion of physical sensors and digital information.The long short term memory(LSTM)can be employed to void vanishing gradient problem and improve predicting precision via Recurrent Neural Networks,thereby laying a foundation for the HDT.The diverse manufacturing requirements of different regions are integrated into the parameters designing phase by attaching region weights confirmed via empiricism and in-service simulation.The effects of slicing strategy and external support structures on manufacturing quality are considered from the perspective of improving dimensional accuracy.The manufacturing efficiency and comprehensive costs are accounted as consideration factors,which are perceptually predicted via LSTM.The designed manufacturing parameters through HDT were virtually examined by evaluating the deformation and equivalent stress distributions of fabricated lightweight component with composite material through AM process simulation.The physical experiments were conducted to verify the HDT-based pre-designing and optimization method of manufacturing parameters via fused deposition modeling(FDM).The energy consumption of actual manufacturing process was measured via digital power meter and applied to evaluate accuracy of perceptual prediction outcomes.The dimensional accuracy and distortion distribution of the manufactured lightweight prototype made with composite material were measured through the coordinate measuring machine(CMM)and 3D optical scanner.The proposed method demonstrates effectiveness in improving manufacturing quality and accurately predicting energy consumption,which have been verified with a three-way solenoid valve element,in which the maximum deformation was reduced by 39.78%and the mean absolute percentage error for perceptual prediction was 3.76%.展开更多
Global carbon cycle has received extensive attention,among which the river-estuary system is one of the important links connecting the carbon cycle between land and ocean.In this paper,the distribution and control fac...Global carbon cycle has received extensive attention,among which the river-estuary system is one of the important links connecting the carbon cycle between land and ocean.In this paper,the distribution and control factors of particulate organic carbon(POC)were studied by using the data of organic carbon contents and its carbon isotopic composition(δ13C)in the mainstream and estuary of Passur River in the Sundarbans area,combined with the hydrological and biological data measured by CTD.The results show that POC content ranged from 0.263 mg/L to 9.292 mg/L,and the POC content in the river section(averaged 4.129 mg/L)was significantly higher than that in the estuary area(averaged 0.858 mg/L).Two distinct stages of POC transport from land to sea in the Sundarbans area were identified.The first stage occurred in the river section,where POC distribution was mainly controlled by the dynamic process of runoff and the organic carbon was mainly terrestrial source.The second stage occurred during estuarine mixing,where the POC distribution was mainly controlled by the mixing process of seawater and freshwater.The source of POC was predominantly marine and exhibiting vertical differences.The surface and middle layers were primarily influenced by marine sources,while the bottom layer was jointly controlled by terrestrial and marine sources of organic carbon.These findings are of great significance for understanding the carbon cycle in such a large mangrove ecosystem like the Sundarbans mangrove.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
文摘Multiple Sclerosis(MS)poses significant health risks.Patients may face neurodegeneration,mobility issues,cognitive decline,and a reduced quality of life.Manual diagnosis by neurologists is prone to limitations,making AI-based classification crucial for early detection.Therefore,automated classification using Artificial Intelligence(AI)techniques has a crucial role in addressing the limitations of manual classification and preventing the development of MS to advanced stages.This study developed hybrid systems integrating XGBoost(eXtreme Gradient Boosting)with multi-CNN(Convolutional Neural Networks)features based on Ant Colony Optimization(ACO)and Maximum Entropy Score-based Selection(MESbS)algorithms for early classification of MRI(Magnetic Resonance Imaging)images in a multi-class and binary-class MS dataset.All hybrid systems started by enhancing MRI images using the fusion processes of a Gaussian filter and Contrast-Limited Adaptive Histogram Equalization(CLAHE).Then,the Gradient Vector Flow(GVF)algorithm was applied to select white matter(regions of interest)within the brain and segment them from the surrounding brain structures.These regions of interest were processed by CNN models(ResNet101,DenseNet201,and MobileNet)to extract deep feature maps,which were then combined into fused feature vectors of multi-CNN model combinations(ResNet101-DenseNet201,DenseNet201-MobileNet,ResNet101-MobileNet,and ResNet101-DenseNet201-MobileNet).The multi-CNN features underwent dimensionality reduction using ACO and MESbS algorithms to remove unimportant features and retain important features.The XGBoost classifier employed the resultant feature vectors for classification.All developed hybrid systems displayed promising outcomes.For multiclass classification,the XGBoost model using ResNet101-DenseNet201-MobileNet features selected by ACO attained 99.4%accuracy,99.45%precision,and 99.75%specificity,surpassing prior studies(93.76%accuracy).It reached 99.6%accuracy,99.65%precision,and 99.55%specificity in binary-class classification.These results demonstrate the effectiveness of multi-CNN fusion with feature selection in improving MS classification accuracy.
文摘Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs.
基金financially supported by the National Natural Science Foundation of China(No.62205091)the Fundamental Research Foundation for Universities of Heilongjiang Province(No.2022-KYYWF-0121)+1 种基金the Natural Science Foundation of Heilongjiang Province Project(No.LH2022F028)the National Key Research and Development Program of China(No.2023YFF1206100)。
文摘The emergence of two-dimensional nanomaterials,especially MXene,significantly overcomes the limitations of flexible pressure sensors regarding their sensing abilities,mechanical properties,and electromagnetic shielding effectiveness.This advancement underscores their great potential for use in wearable and medical monitoring devices.However,single-layer MXene is highly prone to oxidation when exposed to air and tends to stack between layers.Combining MXene with other functional materials to create heterojunction structures effectively addresses the stacking problem while also providing the resulting composites with excellent electrical conductivity,mechanical flexibility,and electromagnetic shielding capabilities,which are essential for enhancing sensor performance.This review systematically outlines various microstructural designs and improvement strategies aimed at boosting the sensing efficiency of different flexible pressure sensors based on MXene.It offers a comprehensive analysis of their significance in medical monitoring,anticipates future challenges and opportunities,and serves as an important reference for advancing precision and personalized approaches in medical monitoring.
基金support from the National Key Research and Development Program of China(No.2021YFB3802105-3)the National Natural Science Foundation of China(No.62173043).
文摘Exosomes derived from bone mesenchymal stem cells(BMSCs)show promising potential for treating bone defects.However,their clinical application is hindered by low yield and insufficient repair ability.Three-dimensional(3D)mechanical stimulation has been a well-known method for enhancing exosome secretion;however,the traditional stimulation process is always achieved by controlling the displacement of manipulators,which may induce uneven loading distribution and degradation of stimulation strength.Here,we propose a micro-stretching manipulator that automatically controls the stretching force applied to gelatin methacryloyl(GelMA)/hyaluronic acid methacryloyl(HAMA)hybrid hydrogel sheets containing BMSCs within an incubator.To ensure the structural stability of the sheets after long-term stretching,the mixing ratio between GelMA and HAMA was optimized according to the mechanical property response of the sheets to cyclical loading.Subsequently,force-controlled mechanical loading was applied to the BMSC-laden sheets to produce exosomes.Compared with displacement control,force-controlled loading provides a more stable force stimulation,thereby enhancing exosome secretion.Furthermore,continuously stimulated exosomes exhibited a stronger capacity for promoting osteogenic differentiation of BMSCs and facilitating the repair of bone defects in a rat model.These findings suggest that force-controlled loading of cell-laden hydrogels offers a novel approach for the production of BMSC-derived exosomes and their application in bone repair.
基金supported by the National Natural Science Foundation of China(No.52001106)Hebei province(No.E2022202158).
文摘Pre-stretching and annealing treatments were conducted on twin roll cast Mg-2Al-1Zn-1Ca(AZX211,in wt.%)plates with a rare earth-like texture.Varying amounts of deformation were applied along the rolling direction(RD)and transverse direction(TD)of AZX211 alloy in order to modify its mechanical proper-ties at room temperature.The results demonstrate that pre-stretching treatment effectively enhances the yield strength(YS),especially along the RD.The strengthening mechanism is attributed to the production of a large number of dislocations and sub-grain boundaries,but the work-hardening ability of the plate will be greatly weakened.Additionally,annealing treatment substantially improves the plasticity and in-plane anisotropy and restores the work-hardening ability.The notable distinction in the pre-stretching process between different directions lies in the underlying deformation mechanism.In case of RD,de-formation is predominantly governed by the slip mechanism of{0002}{11−20}basal slip and{10−10}{11−20}prismatic slip,while along the TD,deformation is primarily controlled by{0002}{11−20}basal slip without significant twinning deformation.When a 6%pre-stretching is conducted,the initial rare earth-like texture of the sample transforms into a symmetrically distributed double-peak basal texture,accompanied by grain refinement.This texture transformation is chiefly due to the dominance of{0002}{11−20}basal slip-driven deformation.Moreover,the annealed sample maintains a strong basal texture,owing to strain-induced recrystallization.
文摘Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 31,Number 11,November 2024,Page 2498 https://doi.org/10.1007/s12613-024-2847-2 In this article,the fund number in the acknowledgements has been erroneously given as the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A151511006)It should be as follows:the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A1515110061).
基金supported by the National Science and Technology Council,Taiwan[Grant number:NSTC111-2320-B-030-013]as well as the Chang Gung University of Science Foundation,Taiwan[Grant number:ZRRPF6N0011].
文摘Background:Silica nanoparticles(SiNPs),commonly utilized in industrial and biomedical fields,are known to provoke pulmonary inflammation by elevating cyclooxygenase-2(COX-2)levels in human pulmonary alveolar epithelial cells(HPAEpiCs).Salvianolic acid A(SAA),a water-soluble polyphenol extracted from Salvia miltiorrhiza(Danshen),possesses well-documented antioxidant and anti-inflammatory activities.Nevertheless,its potential to counteract SiNP-induced inflammatory responses in the lung has not been thoroughly explored.Objective:This study aimed to evaluate the protective role and mechanistic actions of SAA against SiNP-triggered inflammation in both cellular and animal models.Methods:HPAEpiCs were pre-incubated with SAA prior to SiNP exposure to investigate changes in COX-2 expression and prostaglandin E2(PGE2)secretion.A murine model of SiNP-induced lung inflammation was used for in vivo validation.Key inflammatory signaling proteins,including c-Src,PKCα,p42/p44MAPK,and NF-κB p65,were analyzed for phosphorylation status.NF-κB promoter activity was also assessed.Pharmacological inhibitors and siRNA-mediated silencing were employed to verify the signaling cascade responsible for COX-2 regulation.Results:SAA treatment markedly suppressed SiNP-induced upregulation of COX-2 and PGE2 in bothHPAEpiCs andmouse lung tissues.SAA also reduced the activation(phosphorylation)of c-Src,PKCα,p42/p44 MAPK,and NF-κB p65,alongside diminishing NF-κB transcriptional activity.Functional studies using inhibitors and gene silencing further supported the involvement of these pathways inmediating the observed anti-inflammatory effect.Conclusion:By concurrently targeting several upstream pro-inflammatory signaling pathways,SAA demonstrates robust potential in alleviating SiNP-induced lung inflammation.These results highlight SAA as a promising candidate for therapeutic intervention in environmentally triggered respiratory conditions.
基金supported by the National Natural Science Foundation of China(Nos.52225101 and 52171103)the National Key R&D Program of China(No.2021YFB3701100)+1 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030006)the Fundamental Research Funds for the Central Universities(No.2020CDJDPT001).
文摘The weak corrosion resistance of magnesium and its alloys greatly limited the industrial application.Though functional self-healing coatings have been proposed as countermeasures,repeated damages on coatings under practical installation and complex external environments could require self-adaptive cor-rosion protection against multiple abrasions.In this study,an ultra-high corrosion-resistant Mg-1Zn-1Sc(wt.%)alloy with a corrosion rate of 0.087 mm/y has been designed and prepared,which has fine grains and uniform structure of a nano-scale ScZn phase with low potential.A unique and dense corrosion prod-uct film with a three-layered structure was found and studied on Mg-1Zn-1Sc alloy,providing excellent corrosion protection.In addition,the formation and protection mechanisms of the three-layered corrosion product film on Mg-1Zn-1Sc alloy have been discussed and proposed.The growth behavior of protective corrosion product film could be driven by the synergy of Sc and Zn elements.Furthermore,with the in-crease of Sc content,the strength,plasticity,and corrosion resistance of Mg-1Zn-x Sc(x=0,0.2,0.6,1.0,in wt.%)alloys increased simultaneously.The high corrosion resistance and moderate mechanical perfor-mance qualify Mg-1Zn-1Sc alloy as a promising candidate for diverse industrial applications.
基金financially supported by the National Natural Science Foundation of China(Grant No.31772338)the Basic Scientific Research Business Special Project of Jiangsu Academy of Agricultural Sciences(Grant No.0090756100ZX)。
文摘Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study,using PacBio,Illumina,10×Genomics and highthroughput chromosome conformation capture(Hi-C)sequencing technologies,a high-quality chromosome-level reference genome for J.sambac was obtained,exploiting a double-petal phenotype cultivar‘Shuangbanmoli’(JSSB).The results showed that the final assembled genome of JSSB is 580.33 Mb in size(contig N50=1.05 Mb;scaffold N50=45.07 Mb)with a total of 39618 predicted protein-coding genes.Our analyses revealed that the JSSB genome has undergone an ancient whole-genome duplication(WGD)event at 91.68 million years ago(Mya).It was estimated that J.sambac diverged from the lineage leading to Olea europaea and Osmanthus fragrans about 28.8 Mya.On the basis of a combination of genomic,transcriptomic and metabolomic analyses,a range of floral scent volatiles and genes were identified involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways.The results provide new insights into the molecular mechanism of its fragrance biosynthesis in jasmine.
基金the financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technologythe Supported by the Fundamental Research Funds for the Central Universities。
文摘Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs.
基金The Fundamental Research Program for Young Scientists of Shanxi Province(Project No.202103021223294)The Fundamental Research Program of Shanxi Province(Project No.202203021211203)+1 种基金The Start-up Fund for Doctorate Scientific Research Project of Taiyuan University of Science and Technology(Project No.20232124)The Innovation and Entrepreneurship Training Program for Undergraduate,Taiyuan University of Science and Technology(Project No.DCX2024162).
文摘The utilization of perovskite oxide materials as catalysts for the photodegradation of organic pollutants in water is a promising and rapidly advancing field.In this study,a series of La_(1−x)Ba_(x)CoO_(3)(x=0.2,0.3,0.4,0.5,0.6)catalysts with varying Ba doping ratios were synthesized using the citric acid complexation-hydrothermal synthesis combined method for the degradation of phenol under visible light irradiation.Among the synthesized catalysts,La_(0.5)Ba_(0.5)CoO_(3) exhibited the highest photocatalytic activity.In addition,the photocatalytic mechanism for La_(0.5)Ba_(0.5)CoO_(3) perovskite degradation of phenol was also discussed.The synthesized catalysts were characterized using XRD,SEM,FT-IR,XPS,MPMS and other characterization techniques.The results revealed that the diffraction peak intensity of La_(1−x)Ba_(x)CoO_(3) increased with higher Ba doping ratios,and the La_(0.4)Ba_(0.6)CoO_(3) exhibited the strongest diffraction peaks.The catalyst particle sizes ranged from 10 to 50 nm,and the specific surface area decreased with increasing Ba content.Additionally,the paramagnetic properties of La_(0.5)Ba_(0.5)CoO_(3) were similar to that of La_(0.4)Ba_(0.6)CoO_(3).The experimental results suggested that the incorporation of Ba could significantly improve the catalytic performance of La_(1−x)Ba_(x)CoO_(3) perovskites,promote electron transfer and favor to the generation of hydroxyl radicals(•OH),leading to the efficiently degradation of phenol.
基金supported by National Natural Science Foundation of China(Nos.21701083,22279112)Fok Ying-Tong Education Foundation of China(No.171064)Natural Science Foundation of Hebei Province(Nos.B2022203018,B2018203297).
文摘In the development of 3D conductive frameworks for lithium metal anode(LMA),two models have been proposed:top growth model and bottom-up growth model.However,Li tends to accumulate on the top of these 3D frameworks with homogenous lithiophilicity(top growth)and Li dendrite still forms.To address this issue,some researchers have focused on developing 3D frameworks with gradient lithio-philicity,which realized bottom-up growth of Li.Nevertheless,partial Li nucleation sites on the top of these frameworks were missed.Inspired by the two models talked above,this work firstly proposed a novel intermittent lithiophilic model for lithium deposition.To demonstrate the feasibility of this model,a bimetallic metal-organic frameworks derived ZnMn_(2)O_(4)-MnO nanoparticles were grown on carbon cloth for LMA.It can cycle stably under ultra-high current and areal capacity(10 mA/cm^(2),10 mAh/cm^(2)).The in-situ optical microscopy(OM)was conducted to observe the Li deposition behavior,no dendrite was found during 80 h in ester-based electrolyte while the pure Li only cycled for 2h.What is more,it can also be well-coupled with LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and solid-state electrolyte,which further prove the advantages of the intermittent model for the development of LMAs with high safety and high energy density.
基金financially supported by the National Natural Science Foundation of China(Nos.31971249 and 51901239)the Science and Technology Commission of Shanghai Municipality(Nos.19JC1415500 and 20S31903300)。
文摘Malignant obstruction makes gallbladder cancer have a high mortality rate.Nickel-titanium alloy(nitinol)stents are commonly used as a local intervention to maximize patient survival time,but the stents lack antitumor and antibacterial capacity and are vulnerable to secondary obstruction.Arsenic-based drugs show good therapeutic promise against gallbladder cancer.To meet clinical needs.the layered double hydroxides(LDHs)film is constructed on the nitinol,whose arsenite loading amounts rose by 60%after simple heat treatment compared with the conventional anion-exchange strategy.In addition,calcination promotes the dissolution of nickel ions from the LDHs lattice,resulting in a powerful synergistic killing effect on tumor cells together with the released arsenic.More importantly,the calcined arsenic-loaded LDHs are sensitive to the acidic microenvironment of tumor tissues,which presents a much lower arsenic and nickel release amount in the normal tissues,guaranteeing its biosafety.Meanwhile,the vertically sharp LDHs nanosheets can synergize with arsenic to achieve effective physical cleavage and chemical killing of adherent and planktonic bacteria.In short,we attempt to use arsenic drugs for local interventions and reasonably avoid their toxic side effects,which provides a new design idea for nitinol stents applied in the treatment of gallbladder cancer.
基金supported by Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Sciences(No.IIMDKFJJ-21-10)China Postdoctoral Science Foundation(No.2018T110993).
文摘In order to achieve combined mechanical and electrical properties,multi-walled carbon nanotubes(MWCNTs)reinforced Cu/Ti_(3)SiC_(2)/C nanocomposites were further processed by high-pressure torsion(HPT).The maximum microhardness values of central and edge from the composites with 1 wt.%MWCNTs reached HV 130.0 and HV 363.5,which were 43.9%and 39.5%higher than those of the original samples,respectively.With the same content of MWCNTs,its electrical conductivity achieved 3.42×10^(7) S/m,which was increased by 78.1%compared with that of original samples.The synergistic improvement of mechanical and electrical properties is attributed to the obtained microstructure with increased homogenization and refinement,as well as improved interfacial bonding and reduced porosity.The strengthening mechanisms include dispersion and refinement strengthening for mechanical properties,as well as reduced electron scattering for electrical properties.
基金supported by the National Natural Science Foundation of China(Nos.52305436 and 51975553)the Program for Guangdong Basic and Applied Basic Research Foundation,China(No.2021A151511006)+4 种基金Guangxi Science and Technology Major Program,China(No.AA23023029)Liaoning Natural Science Foundation of China(No.2021-MS-007)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y2021061)the Bintech-IMR R&D Program(No.GYYJSBU-2022-002)the Institute of Metal Research Innovation Found,China(No.2022-PY11).
文摘During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties during friction stir lap welding(FSLW).This study focuses on investigating the effects of rotation rate,multipass welding,and cooling methods on lap defect formation,microstructural evolution,and mechanical properties.Hook defects were eliminated by decreasing welding speed,applying two-pass FLSW with a small welding tool,and introducing additional water cooling,thus leading to a remarkable increase in effective sheet thickness and lap width.This above strategy yielded defect-free joints with an ultrafine-grained microstructure and increased tensile shear force from 298 to 551 N/mm.The fracture behavior of FSLW joints was systematically studied,and a fracture factor of lap joints was proposed to predict their fracture mode.By reducing the rotation rate,using two-pass welding,and employing additional water cooling strategies,an enlarged,strengthened,and defect-free lap zone with refined ultrafine grains was achieved with a quality comparable to that of lap welds based on 7xxx Al alloys.Importantly,this study provides a valuable FSLW method for eliminating hook defects and improving joint performance.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
基金Supported by National Key Research and Development Project of China(Grant No.2022YFB3303303)Zhejiang Provincial Research and Development Project of China(Grant No.LGG22E050010)Key Open Fund of State Key Laboratory of Materials Processing and Die and Mould Technology of China(Grant No.P2024-001).
文摘This paper proposes a deformation evolution and perceptual prediction methodology for additive manufacturing of lightweight composite driven by hybrid digital twins(HDT).In order to improve manufacturing quality of irregular lightweight composite through boosting conceptual design in aeronautic and aerospace engineering,the HDT meaning hybridization of physical and digital domains,including deformation and energy efficiency can be built,where the essential parameters can be perceptually predicted in advance,by virtue of the fusion of physical sensors and digital information.The long short term memory(LSTM)can be employed to void vanishing gradient problem and improve predicting precision via Recurrent Neural Networks,thereby laying a foundation for the HDT.The diverse manufacturing requirements of different regions are integrated into the parameters designing phase by attaching region weights confirmed via empiricism and in-service simulation.The effects of slicing strategy and external support structures on manufacturing quality are considered from the perspective of improving dimensional accuracy.The manufacturing efficiency and comprehensive costs are accounted as consideration factors,which are perceptually predicted via LSTM.The designed manufacturing parameters through HDT were virtually examined by evaluating the deformation and equivalent stress distributions of fabricated lightweight component with composite material through AM process simulation.The physical experiments were conducted to verify the HDT-based pre-designing and optimization method of manufacturing parameters via fused deposition modeling(FDM).The energy consumption of actual manufacturing process was measured via digital power meter and applied to evaluate accuracy of perceptual prediction outcomes.The dimensional accuracy and distortion distribution of the manufactured lightweight prototype made with composite material were measured through the coordinate measuring machine(CMM)and 3D optical scanner.The proposed method demonstrates effectiveness in improving manufacturing quality and accurately predicting energy consumption,which have been verified with a three-way solenoid valve element,in which the maximum deformation was reduced by 39.78%and the mean absolute percentage error for perceptual prediction was 3.76%.
基金The Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract Nos TIO2020008 and TIO2019028the Project of Marine Protected Areas Network in China-ASEAN Countries,National Key Research and Development Programe under contract No.2017YFC1405100the National Science Foundation of China under contract No.41976050.
文摘Global carbon cycle has received extensive attention,among which the river-estuary system is one of the important links connecting the carbon cycle between land and ocean.In this paper,the distribution and control factors of particulate organic carbon(POC)were studied by using the data of organic carbon contents and its carbon isotopic composition(δ13C)in the mainstream and estuary of Passur River in the Sundarbans area,combined with the hydrological and biological data measured by CTD.The results show that POC content ranged from 0.263 mg/L to 9.292 mg/L,and the POC content in the river section(averaged 4.129 mg/L)was significantly higher than that in the estuary area(averaged 0.858 mg/L).Two distinct stages of POC transport from land to sea in the Sundarbans area were identified.The first stage occurred in the river section,where POC distribution was mainly controlled by the dynamic process of runoff and the organic carbon was mainly terrestrial source.The second stage occurred during estuarine mixing,where the POC distribution was mainly controlled by the mixing process of seawater and freshwater.The source of POC was predominantly marine and exhibiting vertical differences.The surface and middle layers were primarily influenced by marine sources,while the bottom layer was jointly controlled by terrestrial and marine sources of organic carbon.These findings are of great significance for understanding the carbon cycle in such a large mangrove ecosystem like the Sundarbans mangrove.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.