The growing number of underwater activities is giving momentum to the development of new technologies, such as buoys, remotely operated vehicles, and autonomous underwater vehicles. The data collected by these vehicle...The growing number of underwater activities is giving momentum to the development of new technologies, such as buoys, remotely operated vehicles, and autonomous underwater vehicles. The data collected by these vehicles need to be transmitted to a high-speed central unit. Clearly, wired solutions are not suitable, since they strongly impact the mobility. In this scenario, a promising solution is offered by underwater optical wireless communication(UOWC) technology, which can achieve both high-speed and wireless operation. Here, we provide a comprehensive survey on the challenges, the experimental realizations, and the state of the art in UOWC researches.展开更多
Free-space optics naturally offers multiple-channel communications and sensing exploitable in many applications. The different optical beams will, however, generally be overlapping at the receiver, and, especially wit...Free-space optics naturally offers multiple-channel communications and sensing exploitable in many applications. The different optical beams will, however, generally be overlapping at the receiver, and, especially with atmospheric turbulence or other scattering or aberrations, the arriving beam shapes may not even be known in advance. We show that such beams can be still separated in the optical domain, and simultaneously detected with negligible cross-talk, even if they share the same wavelength and polarization, and even with unknown arriving beam shapes. The kernel of the adaptive multibeam receiver presented in this work is a programmable integrated photonic processor that is coupled to free-space beams through a two-dimensional array of optical antennas. We demonstrate separation of beam pairs arriving from different directions, with overlapping spatial modes in the same direction, and even with mixing between the beams deliberately added in the path. With the circuit’s optical bandwidth of more than 40 nm, this approach offers an enabling technology for the evolution of FSO from single-beam to multibeam space-division multiplexed systems in a perturbed environment, which has been a game-changing transition in fiber-optic systems.展开更多
We propose and demonstrate a reconfigurable and single-shot incoherent optical signal processing system for chirped microwave signal compression, using a programmable optical filter and a multiwavelength laser(MWL). T...We propose and demonstrate a reconfigurable and single-shot incoherent optical signal processing system for chirped microwave signal compression, using a programmable optical filter and a multiwavelength laser(MWL). The system is implemented by temporally modulating a specially shaped MWL followed by a suitable linear dispersive medium. A microwave dispersion value up to 1.33 ns/GHz over several GHz bandwidth is achieved based on this approach. Here we demonstrate a singleshot compression for different linearly chirped microwave signals over several GHz bandwidth. In addition, the robustness of the proposed system when input RF signals are largely distorted is also discussed.展开更多
文摘The growing number of underwater activities is giving momentum to the development of new technologies, such as buoys, remotely operated vehicles, and autonomous underwater vehicles. The data collected by these vehicles need to be transmitted to a high-speed central unit. Clearly, wired solutions are not suitable, since they strongly impact the mobility. In this scenario, a promising solution is offered by underwater optical wireless communication(UOWC) technology, which can achieve both high-speed and wireless operation. Here, we provide a comprehensive survey on the challenges, the experimental realizations, and the state of the art in UOWC researches.
基金the European Commission,Horizon 2020 Programme(SuperPixels,grant no.829116)by the Air Force Office of Scientific Research(AFOSR,grant no.FA9550-17-1-0002).
文摘Free-space optics naturally offers multiple-channel communications and sensing exploitable in many applications. The different optical beams will, however, generally be overlapping at the receiver, and, especially with atmospheric turbulence or other scattering or aberrations, the arriving beam shapes may not even be known in advance. We show that such beams can be still separated in the optical domain, and simultaneously detected with negligible cross-talk, even if they share the same wavelength and polarization, and even with unknown arriving beam shapes. The kernel of the adaptive multibeam receiver presented in this work is a programmable integrated photonic processor that is coupled to free-space beams through a two-dimensional array of optical antennas. We demonstrate separation of beam pairs arriving from different directions, with overlapping spatial modes in the same direction, and even with mixing between the beams deliberately added in the path. With the circuit’s optical bandwidth of more than 40 nm, this approach offers an enabling technology for the evolution of FSO from single-beam to multibeam space-division multiplexed systems in a perturbed environment, which has been a game-changing transition in fiber-optic systems.
基金supported by research grants from NSERC(Canada)agenciesalso partly supported by the National Natural Science Foundation of China(61522509,61377002 and 61090391)+2 种基金Beijing Natural Science Foundation(4152052)the National High-Tech Research and Development Program of China(2015AA017102)M.L.was supported partly by the Thousand Young Talent Program
文摘We propose and demonstrate a reconfigurable and single-shot incoherent optical signal processing system for chirped microwave signal compression, using a programmable optical filter and a multiwavelength laser(MWL). The system is implemented by temporally modulating a specially shaped MWL followed by a suitable linear dispersive medium. A microwave dispersion value up to 1.33 ns/GHz over several GHz bandwidth is achieved based on this approach. Here we demonstrate a singleshot compression for different linearly chirped microwave signals over several GHz bandwidth. In addition, the robustness of the proposed system when input RF signals are largely distorted is also discussed.