期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Microstructures in a carburized steel after isothermal pearlitic treatment
1
作者 J.Abraham Mathews H.Farahani +3 位作者 J.Sietsma R.H.Petrov M.G.Mecozzi M.J.Santofimia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第29期66-75,共10页
The influence of carbon concentration variations on pearlite formation(20 h at 600℃)in a case-carburized steel is investigated.The resultant microstructure shows three distinct regions:carburized case,a transition re... The influence of carbon concentration variations on pearlite formation(20 h at 600℃)in a case-carburized steel is investigated.The resultant microstructure shows three distinct regions:carburized case,a transition region,and the original core.The microstructural transition from the case to the core regions is observed to be relatively sharp.The investigated region of the carburized case(0.9 wt.%C)con-tains two types of pearlite:ferrite+cementite and ferrite+M_(23)C_(6),where the pearlitic aggregate with M_(23)C_(6)shows faster formation kinetics.The kinetics of pearlite formation in the transition region(0.3 wt.%C)is very slow and is observed with only M_(23)C_(6)carbide.Only around 40%austenite decomposes into pearlite in the transition region,which,in comparison to the carburized case region of 0.9 wt.%C is a fraction that is lower by a factor of two.Pearlite is absent in the investigated core region(0.16 wt.%C).The microstructure in this region is predominantly martensite and pro-eutectoid ferrite,with a fraction of ferrite well below the equilibrium fraction.Ferrite formation in this region is limited by the redistribution of mainly Ni,Mn,and Cr,and their resulting solute drag effect on the austenite/ferrite interface.A ther-modynamic and kinetic argumentation of these observations is provided with the help of thermodynamic data,precipitation simulations,and a general mixed-mode Gibbs energy balance model. 展开更多
关键词 Pearlite formation Carburized steel M 2_(3)C_(6)carbide KINETICS Solute drag
原文传递
Interfacial microstructure and mechanical properties of Ti-6Al-4V/Al7050 joints fabricated using the insert molding method 被引量:2
2
作者 Hong-xiang Li Xin-yu Nie +4 位作者 Zan-bing He Kang-ning Zhao Qiang Du Ji-shan Zhang Lin-zhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1412-1423,共12页
Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temper... Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment. 展开更多
关键词 INTERFACIAL microstructure INTERFACIAL BONDING mechanism mechanical properties INSERT MOLDING method coherent boundaries Ti/Al JOINTS
在线阅读 下载PDF
Multiscale friction model for hot sheet metal forming 被引量:2
3
作者 Jenny VENEMA Javad HAZRATI +2 位作者 Eisso ATZEMA David MATTHEWS Ton van den BOOGAARD 《Friction》 SCIE EI CAS CSCD 2022年第2期316-334,共19页
The accurate description of friction is critical in the finite element(FE)simulation of the sheet metal forming process.Usually,friction is oversimplified through the use of a constant Coulomb friction coefficient.In ... The accurate description of friction is critical in the finite element(FE)simulation of the sheet metal forming process.Usually,friction is oversimplified through the use of a constant Coulomb friction coefficient.In this study,the application of an existing multiscale friction model is extended to the hot stamping process.The model accounts for the effects of tool and sheet metal surface topography as well as the evolution of contact pressure,temperature,and bulk strain during hot stamping.Normal load flattening and strip drawing experiments are performed to calibrate the model.The results show that the model can relatively well predict friction in strip draw experiments when the tool surface evolution due to wear is incorporated.Finally,the application of the formulated multiscale friction model was demonstrated in the FE simulation of a hot-stamped part. 展开更多
关键词 TRIBOLOGY WEAR FRICTION hot stamping friction model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部