Aerogel materials manufactured from metal oxides have been used as components in numerous high-energy density physics targets. These aerogels have been identified to be used as a future target material in the AWE fiel...Aerogel materials manufactured from metal oxides have been used as components in numerous high-energy density physics targets. These aerogels have been identified to be used as a future target material in the AWE fielded campaigns at the US National Ignition Facility. A wide variety of metal oxide aerogels are required for future campaigns and therefore a versatile manufacturing route is sought; as such, an epoxide-assisted sol–gel route was investigated. Under the European Union Registration, Evaluation, Authorization and Restriction of Chemicals legislation, the most commonly used epoxide, propylene oxide, is recognized as a substance of very high concern(SVHC). This work sought to investigate suitable alternative epoxides for use in target manufacture. The outcome was the identification of synthesis routes for stable metal oxide aerogel monoliths using epoxides not subject to the above restrictions.展开更多
This article describes the fabrication of a suite of laser targets by the Target Fabrication group in the Central Laser Facility(CLF), STFC Rutherford Appleton Laboratory for the first academic-access experiment on th...This article describes the fabrication of a suite of laser targets by the Target Fabrication group in the Central Laser Facility(CLF), STFC Rutherford Appleton Laboratory for the first academic-access experiment on the Orion laser facility(Hopps et al., Appl. Opt. 52, 3597–3601(2013)) at Atomic Weapons Establishment(AWE). This experiment, part of the POLAR project(Falize et al., Astrophys. Space Sci. 336, 81–85(2011); Busschaert et al., New J. Phys. 15, 035020(2013)),studied conditions relevant to the radiation-hydrodynamic processes occurring in a remarkable class of astrophysical star systems known as magnetic cataclysmic variables. A large number of complex fabrication technologies and research and development activities were required to field a total of 80 high-specification targets. Target design and fabrication procedures are described and initial alignment and characterization data are discussed.展开更多
Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray compute...Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography(CT)and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.展开更多
基金funded by AWE,Aldermaston,Reading,Berkshire,RG7 4PR,UK
文摘Aerogel materials manufactured from metal oxides have been used as components in numerous high-energy density physics targets. These aerogels have been identified to be used as a future target material in the AWE fielded campaigns at the US National Ignition Facility. A wide variety of metal oxide aerogels are required for future campaigns and therefore a versatile manufacturing route is sought; as such, an epoxide-assisted sol–gel route was investigated. Under the European Union Registration, Evaluation, Authorization and Restriction of Chemicals legislation, the most commonly used epoxide, propylene oxide, is recognized as a substance of very high concern(SVHC). This work sought to investigate suitable alternative epoxides for use in target manufacture. The outcome was the identification of synthesis routes for stable metal oxide aerogel monoliths using epoxides not subject to the above restrictions.
文摘This article describes the fabrication of a suite of laser targets by the Target Fabrication group in the Central Laser Facility(CLF), STFC Rutherford Appleton Laboratory for the first academic-access experiment on the Orion laser facility(Hopps et al., Appl. Opt. 52, 3597–3601(2013)) at Atomic Weapons Establishment(AWE). This experiment, part of the POLAR project(Falize et al., Astrophys. Space Sci. 336, 81–85(2011); Busschaert et al., New J. Phys. 15, 035020(2013)),studied conditions relevant to the radiation-hydrodynamic processes occurring in a remarkable class of astrophysical star systems known as magnetic cataclysmic variables. A large number of complex fabrication technologies and research and development activities were required to field a total of 80 high-specification targets. Target design and fabrication procedures are described and initial alignment and characterization data are discussed.
文摘Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together.In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography(CT)and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.