This paper investigates the stabilization of underactuated vehicles moving in a three-dimensional vector space.The vehicle’s model is established on the matrix Lie group SE(3),which describes the configuration of rig...This paper investigates the stabilization of underactuated vehicles moving in a three-dimensional vector space.The vehicle’s model is established on the matrix Lie group SE(3),which describes the configuration of rigid bodies globally and uniquely.We focus on the kinematic model of the underactuated vehicle,which features an underactuation form that has no sway and heave velocity.To compensate for the lack of these two velocities,we construct additional rotation matrices to generate a motion of rotation coupled with translation.Then,the state feedback is designed with the help of the logarithmic map,and we prove that the proposed control law can exponentially stabilize the underactuated vehicle to the identity group element with an almost global domain of attraction.Later,the presented control strategy is extended to set-point stabilization in the sense that the underactuated vehicle can be stabilized to an arbitrary desired configuration specified in advance.Finally,simulation examples are provided to verify the effectiveness of the stabilization controller.展开更多
Computer based automation and control systems are becoming increasingly important in smart sustainable buildings,often referred to as automated buildings(ABs),in order to automatically control,optimize and supervise a...Computer based automation and control systems are becoming increasingly important in smart sustainable buildings,often referred to as automated buildings(ABs),in order to automatically control,optimize and supervise a wide range of building performance applications over a network while minimizing energy consumption and associated green house gas emission.This technology generally refers to building automation and control systems(BACS)architecture.Instead of costly and time-consuming experiments,this paper focuses on development and design of a distributed dynamic simulation environment with the capability to represent BACS architecture in simulation by run-time coupling two or more different software tools over a network.This involves using distributed dynamic simulations as means to analyze the performance and enhance networked real-time control systems in ABs and improve the functions of real BACS technology.The application and capability of this new dynamic simulation environment are demonstrated by an experimental design,in this paper.展开更多
The living heritage approach seeks to link heritage properties with the living dimensions attributed by local communities–tangible and intangible heritage.However,how living heritage can be further understood and man...The living heritage approach seeks to link heritage properties with the living dimensions attributed by local communities–tangible and intangible heritage.However,how living heritage can be further understood and managed in post-disaster traditional settlements has yet to be explored adequately.This paper discusses the concept of living heritage embedded in post-earthquake planning and reconstruction of traditional settlements in Jiuzhaigou Valley,a World Heritage property in Sichuan Province.The thematic analysis method is employed to conduct both deductive and inductive content analysis of governmental administrative documents on post-earthquake reconstruction policies and practices.The results demonstrate that the continuity of heritage and the continuity of community are the two essential attributes conceptualizing living heritage by developing a people-centered approach to resilience-building in post-disaster traditional settlements.The paper broadens the concept of living heritage by incorporating the discussion of heritage and traditional settlements into a post-disaster context.The living heritage approach can be further elaborated into an integrated heritage management approach relying on community values and empowerment,to promote urban and rural conservation and urbanization policy-making and practices worldwide.展开更多
The global trend towards urbanisation explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on enersy use of buildings. Al...The global trend towards urbanisation explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on enersy use of buildings. Also urban comfort, health and durability, referring respectively to pedestrian wind/ thermal comfort, pollutant dispersion and wind-driven rain are of interest. Urban Physics is a well- established discipline, incorporating relevant branches of physics, environmental chemistry, aerodynamics, meteorolosy and statistics. Therefore, Urban Physics is well positioned to provide keycontributions to the current urban problems and challenges. The present paper addresses the role of Urban Physics in the study of wind comfort, thermal comfort, energy demand, pollutant dispersion and wind-driven rain. Furthermore, the three major research methods applied in Urban Physics, namely field experiments, wind tunnel experiments and numerical simulations are discussed. Case studies illustrate the current challenges and the relevant contributions of Urban Physics.展开更多
Industrial hails are characterized with their retatively high roof-to-floor ratio, which facilitates ready deployment of renewable energy generation, such as photovoltaic (PV) systems, on the rooftop. To promote dep...Industrial hails are characterized with their retatively high roof-to-floor ratio, which facilitates ready deployment of renewable energy generation, such as photovoltaic (PV) systems, on the rooftop. To promote deployment of renewable energy generation, feed-in tariff (FIT) higher than the electricity rate is available in many countries to subsidize the capital investment. FIT comes in different forms. For net FIT, in order to maximize the economic benefit, surplus electridty generation at each hour is desirable. One way to achieve surplus electricity generation is by increasing generation capacity, which is synonymous to higher capital investment. In fact, surplus electricity generation can also be achieved by lowering the energy demand of the building. This particularly the case for industrial hatls, which are usually subject to high energy demand for space conditioning in order to remove the excess heat gain due to the many power-intensive processes. Building energy performance simulation toots can be used to explore the different building design options that could lower the energy demand. In this paper, single-objective optimization on investment return will be deployed to study the cost effectiveness among different options in lowering energv demand. It Will-be demonstrated with a case study of a warehouse.展开更多
基金supported by the National Natural Science Foundation of China(61773024,62073002)the Eindhoven Artificial Intelligence Systems Institute(EAISI),and the ELLIIT Excellence Center and the Swedish Foundation for Strategic Research,Sweden(RIT150038)。
文摘This paper investigates the stabilization of underactuated vehicles moving in a three-dimensional vector space.The vehicle’s model is established on the matrix Lie group SE(3),which describes the configuration of rigid bodies globally and uniquely.We focus on the kinematic model of the underactuated vehicle,which features an underactuation form that has no sway and heave velocity.To compensate for the lack of these two velocities,we construct additional rotation matrices to generate a motion of rotation coupled with translation.Then,the state feedback is designed with the help of the logarithmic map,and we prove that the proposed control law can exponentially stabilize the underactuated vehicle to the identity group element with an almost global domain of attraction.Later,the presented control strategy is extended to set-point stabilization in the sense that the underactuated vehicle can be stabilized to an arbitrary desired configuration specified in advance.Finally,simulation examples are provided to verify the effectiveness of the stabilization controller.
文摘Computer based automation and control systems are becoming increasingly important in smart sustainable buildings,often referred to as automated buildings(ABs),in order to automatically control,optimize and supervise a wide range of building performance applications over a network while minimizing energy consumption and associated green house gas emission.This technology generally refers to building automation and control systems(BACS)architecture.Instead of costly and time-consuming experiments,this paper focuses on development and design of a distributed dynamic simulation environment with the capability to represent BACS architecture in simulation by run-time coupling two or more different software tools over a network.This involves using distributed dynamic simulations as means to analyze the performance and enhance networked real-time control systems in ABs and improve the functions of real BACS technology.The application and capability of this new dynamic simulation environment are demonstrated by an experimental design,in this paper.
基金supported by the National Key R&D Program of China(No.2019YFC1520800)the Fundamental Research Funds for the Central Universities(No.2682022CX044)the Subject of Sichuan Science and Technology Program(Nos.2021YFS0367,2019YFS0077)。
文摘The living heritage approach seeks to link heritage properties with the living dimensions attributed by local communities–tangible and intangible heritage.However,how living heritage can be further understood and managed in post-disaster traditional settlements has yet to be explored adequately.This paper discusses the concept of living heritage embedded in post-earthquake planning and reconstruction of traditional settlements in Jiuzhaigou Valley,a World Heritage property in Sichuan Province.The thematic analysis method is employed to conduct both deductive and inductive content analysis of governmental administrative documents on post-earthquake reconstruction policies and practices.The results demonstrate that the continuity of heritage and the continuity of community are the two essential attributes conceptualizing living heritage by developing a people-centered approach to resilience-building in post-disaster traditional settlements.The paper broadens the concept of living heritage by incorporating the discussion of heritage and traditional settlements into a post-disaster context.The living heritage approach can be further elaborated into an integrated heritage management approach relying on community values and empowerment,to promote urban and rural conservation and urbanization policy-making and practices worldwide.
文摘The global trend towards urbanisation explains the growing interest in the study of the modification of the urban climate due to the heat island effect and global warming, and its impact on enersy use of buildings. Also urban comfort, health and durability, referring respectively to pedestrian wind/ thermal comfort, pollutant dispersion and wind-driven rain are of interest. Urban Physics is a well- established discipline, incorporating relevant branches of physics, environmental chemistry, aerodynamics, meteorolosy and statistics. Therefore, Urban Physics is well positioned to provide keycontributions to the current urban problems and challenges. The present paper addresses the role of Urban Physics in the study of wind comfort, thermal comfort, energy demand, pollutant dispersion and wind-driven rain. Furthermore, the three major research methods applied in Urban Physics, namely field experiments, wind tunnel experiments and numerical simulations are discussed. Case studies illustrate the current challenges and the relevant contributions of Urban Physics.
文摘Industrial hails are characterized with their retatively high roof-to-floor ratio, which facilitates ready deployment of renewable energy generation, such as photovoltaic (PV) systems, on the rooftop. To promote deployment of renewable energy generation, feed-in tariff (FIT) higher than the electricity rate is available in many countries to subsidize the capital investment. FIT comes in different forms. For net FIT, in order to maximize the economic benefit, surplus electridty generation at each hour is desirable. One way to achieve surplus electricity generation is by increasing generation capacity, which is synonymous to higher capital investment. In fact, surplus electricity generation can also be achieved by lowering the energy demand of the building. This particularly the case for industrial hatls, which are usually subject to high energy demand for space conditioning in order to remove the excess heat gain due to the many power-intensive processes. Building energy performance simulation toots can be used to explore the different building design options that could lower the energy demand. In this paper, single-objective optimization on investment return will be deployed to study the cost effectiveness among different options in lowering energv demand. It Will-be demonstrated with a case study of a warehouse.