期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rationally designing the composition and phase structure of Ni-Fe-Mn ternary layered oxide system for high-voltage sodium-ion batteries
1
作者 Bo Peng Ji Shi +4 位作者 Feng Zhu Zihao Zhou Xing Huang Jie Xu Lianbo Ma 《Journal of Energy Chemistry》 2025年第5期28-35,共8页
Sodium-ion batteries are the prominent device for stationary energy storage system and low-speed electric vehicles.However,the practical application is still limited by the unsatisfied performance and high cost of the... Sodium-ion batteries are the prominent device for stationary energy storage system and low-speed electric vehicles.However,the practical application is still limited by the unsatisfied performance and high cost of the cathode side,which strictly requires the development of high voltage,high capacity,and earth-abundant cathode material.Ni-Fe-Mn ternary layered oxide has been recognized as one of the most promising standard type of cathodes.However,the composition and phase structure on high-voltage characteristics have not been well investigated.Herein,selecting the typically high-voltage cathode of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)as a parent material,we fabricate ten Ni-Fe-Mn ternary layered oxides through replacing the Ni,Mn,or both Ni and Mn by Fe.The thermodynamically stable phase diagram for those materials is presented.The electrochemical properties for all the samples are investigated in detail.Three potential Ni-Fe-Mn ternary layered oxides are picked up considering the energy density,cycle stability,kinetics,cost price,and working voltage,which demonstrate great potential for surpassing the performance of lithium iron phosphate.The related electrochemical reaction and fading mechanism are well revealed.This work provides some new foundational Ni-Fe-Mn ternary layered materials for high-voltage sodium-ion batteries. 展开更多
关键词 Sodium-ion batteries High-voltage cathode Ni-Fe-Mn ternary materials Phase structure Electrochemical reaction mechanism
在线阅读 下载PDF
An additively manufactured precipitation hardening medium entropy alloy with excellent strength-ductility synergy over a wide temperature range 被引量:1
2
作者 Jing Huang Wanpeng Li +5 位作者 Tao Yang Tzu-Hsiu Chou Rui Zhou Bin Liu Jacob C.Huang Yong Liu 《Journal of Materials Science & Technology》 CSCD 2024年第30期247-264,共18页
Modern engineering has long been in demand for high-performance additive manufactured materials for harsh working conditions.The idea of high entropy alloy(HEA),medium entropy alloy(MEA),and multi-principal-element al... Modern engineering has long been in demand for high-performance additive manufactured materials for harsh working conditions.The idea of high entropy alloy(HEA),medium entropy alloy(MEA),and multi-principal-element alloy(MPEA)provides a new way for alloy design.In this work,we develop a Co42 Cr20 Ni30 Ti4 Al4 quinary MEA which exhibits a superiority of mechanical properties over a wide tem-perature ranging from 77 to 873 K via selective laser melting(SLM)and post-heat treatment.The present MEA achieves an excellent ultimate tensile strength(UTS)of 1586 MPa with a total elongation(TE)of 22.7%at 298 K,a UTS of 1944 MPa with a TE of 22.6%at 77 K,and a UTS of 1147 MPa with a TE of 9.1%at 873 K.The excellent mechanical properties stem from the microstructures composed of partially refined grains and heterogeneously precipitated L12 phase due to the concurrence of recrystallization and precipitation.The grain boundary hardening,precipitation hardening,and dislocation hardening con-tribute to the high YS at 298 and 77 K.Interactions of nano-spaced stacking faults(SFs)including SFs networks,Lomer-Cottrell locks(L-C locks),and anti-phase boundaries(APBs)induced by the shearing of L12 phase are responsible for the high strain hardening rate and plasticity at 77 K.Our work provides a new insight for the incorporation of precipitation hardening and additive manufacturing technology,paving the avenue for the development of high-performance structural materials. 展开更多
关键词 Additive manufacturing Selective laser melting Medium entropy alloy Multi–principal-element alloy Precipitation hardening Mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部