Rolling noise is produced by vibration of the wheels and track,induced by their combined surface roughness.It is important to know the relative contributions of the different sources,as this affects noise control stra...Rolling noise is produced by vibration of the wheels and track,induced by their combined surface roughness.It is important to know the relative contributions of the different sources,as this affects noise control strategies as well as acceptance testing of new rolling stock.Three different techniques are described that aim to use pass-by measurements to separate the wheel and track components of rolling noise.One is based on the TWINS model,which is tuned to measured track vibration.The second is based on the advanced transfer path analysis method,which provides an entirely experimental assessment.The third is based on the pass-by analysis method in combination with static vibroacoustic transfer functions which are obtained using a reciprocity method.The development of these methods is described and comparisons between them are presented using the results from three experimental measurement campaigns.These covered a metro train,a regional train and a high-speed train at a range of speeds.The various methods agree reasonably well in terms of overall trends,with moderate agreement in the mid-frequency region,and less consistent results at low and high frequency.展开更多
In 2017,a ballistic phenomenological model was proposed by the authors of Ref.[1] to numerically simulate the experimental depths of small caliber projectiles impacting walls made of adobe.The opportunity for a new mo...In 2017,a ballistic phenomenological model was proposed by the authors of Ref.[1] to numerically simulate the experimental depths of small caliber projectiles impacting walls made of adobe.The opportunity for a new model in the field revealed from the observation that two older models recently used by the authors of Ref.[2] shared a linear relationship between the penetration depth P and the impacting velocity v_(O).展开更多
Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper ...Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.展开更多
A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,con...A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,connectedby a bolt,under a variety of loads and elevated temperatures.The method consists of a global-scale model thatsimulates the structure(here the two plates)by volume finite elements,and in which the bolt is modelled bya spring.The spring properties are provided by a smallscale model,in which the bolt is modelled by volumeelements,and for which the boundary conditions are retrieved from the global-scale model.To ensure the small-scale model to be as computationally efficient as possible,simplifications are discussed regarding the materialmodel and the modelling of the threads.For the latter,this leads to the experimentally validated application ofa non-threaded shank with its stress area.It is shown that a non-linear elastic spring is needed for the bolt inthe global-scale model,so the post-peak behavior of the structure can be described efficiently.All types of boltedconnection failure as given by design standards are simulated by the twoscale method,which is successfullyvalidated(except for net section failure)by experiments,and verified by a detailed system model,which modelsthe structure in full detail.The sensitivity to the size of the part of the plate used in the small-scale modelis also studied.Finally,multi-directional load cases,also for elevated temperatures,are studied with the two-scale method and verified with the detailed system model.As a result,a computationally efficient finite elementmodelling approach is provided for all possible combined load actions(except for nut thread failure and netsection failure)and temperatures.The two-scale method is shown to be insightful,for it contains a functionalseparation of scales,revealing their relationships,and consequently,local small-scale non-convergence can behandled.Not presented in this paper,but the two-scale method can be used in e.g.computationally expensive two-way coupled fire-structure simulations,where it is beneficial for distributed computing and densely packed boltconfigurations with stiffplates,for which a single small-scale model may be representative for several connections.展开更多
Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect ...Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.展开更多
Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How- ever, acoustic measurements for such...Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How- ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full- scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.展开更多
In this paper,the geomechanical impact of large-scale carbon dioxide(CO) storage in depleted Dutch gas fields is compared with the impact of COstorage in saline aquifers.The geomechanical behaviour of four potential C...In this paper,the geomechanical impact of large-scale carbon dioxide(CO) storage in depleted Dutch gas fields is compared with the impact of COstorage in saline aquifers.The geomechanical behaviour of four potential COstorage sites is examined using flow and geomechanical simulations.Many gas reservoirs in the Netherlands are found in fault blocks,one to a few kilometres wide,laterally bounded by sealing faults.Aquifer depletion or re-pressurization in the lateral direction is seldom an issue because of a lack of active aquifers.Reservoir pressure changes are therefore limited to a gas-bearing fault block,while the induced stress changes affect the gas reservoir and extend 1-3 km away into the surrounding rock.Arguments in favour of COstorage in depleted gas fields are:proven seal quality,availability of field data,no record of seal integrity failure by fault reactivation from the seismically active producing Dutch gas fields,and the potential benefits of restoring the virgin formation pressure and stress state to geomechanical stability.On the other hand,COinjection in saline aquifers causes pressure build-up that exceeds the virgin hydrostatic pressure.Stress perturbations resulting from pressure build-up affect large areas,extending tens of kilometres away from the injection wells.Induced stresses in top seals are.however,small and do not exceed a few tenths of megapascal for a pressure build-up of a few megapascals in the storage formation.Geomechanical effects on top seals are weak,but could be enhanced close to the injection zone by the thermal effects of injection.Uncertainties related to characterisation of large areas affected by pressure build-up are significant,and seal quality and continuity are more difficult to be demonstrated for aquifers than for depleted gas reservoirs that have held hydrocarbons for millions of years.展开更多
Heavy duty diesel vehicles compliant with current Euro VI/EPA13 emission limits employ aftertreatment systems based on DOC/DPF technology for soot and particulate matter reduction and SCR catalysts with urea dosing fo...Heavy duty diesel vehicles compliant with current Euro VI/EPA13 emission limits employ aftertreatment systems based on DOC/DPF technology for soot and particulate matter reduction and SCR catalysts with urea dosing for NO x reduction. Traditionally, the majority of the control systems used for urea dosing are map based. However, increasing system complexity combined with real-world performance requirements are a strong motivation to switch to a model-based control approach. Firstly, this article describes a model-based design approach for aftertreatment control development. Focus is on urea dosing control for Euro VI level SCR systems. To achieve the legal emissions limits, including in-service conformity over the vehicle lifetime, advanced model-based control strategies enable maximal NO x conversion in combination with minimum ammonia slip, while ensuring robustness against real-life disturbances. Simulation and experimental results of the control system are presented, which demonstrate the performance and robustness properties. Following this model-based approach, a concept study is performed to explore aftertreatment and control technologies to achieve ultra-low NO x emissions as will be imposed by regulatory bodies in the near future. It is shown that aftertreatment concepts with Passive NO x Adsorber and SCR on DPF are most promising. To optimize overall engine-aftertreatment performance, the modelbased control approach is extended towards Integrated Emission Management(IEM). Based on the actual system state, this supervisory controller minimizes operating costs at each instant in time under all operating conditions. This is key for costoptimal and robust performance.展开更多
In this context, we applied the radial water jet drilling(RJD) technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bntheim, Germany. For testing the state-of-the-art jetti...In this context, we applied the radial water jet drilling(RJD) technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bntheim, Germany. For testing the state-of-the-art jetting technology, a jetting experiment was performed to investigate the influence of geological heterogeneity on the jetting performance and the hole geometry, the influence of nozzle geometry and jetting pressure on the rate of penetration, and the possibility of localising the jetting nozzle utilizing acoustic activity. It is observed that the jetted holes can intersect fractures under varying angles, and the jetted holes do not follow a straight path when jetting at ambient surface condition. Cuttings from the jetting process retrieved from the holes can be used to estimate the reservoir rock permeability. Within the quarry, we did not observe a change in the rate of penetration due to jetting pressure variations.Acoustic monitoring was partially successful in estimating the nozzle location. Although the experiments were performed at ambient surface conditions, the results can give recommendations for a downhole application in deep wells.展开更多
In this paper, a new one-dimensional phenomenological model is developed for the assessment of the ballistic performance of Adobe. Adobe is a masonry largely spread in areas of the world involved in military operation...In this paper, a new one-dimensional phenomenological model is developed for the assessment of the ballistic performance of Adobe. Adobe is a masonry largely spread in areas of the world involved in military operations. Addressing fundamental ballistic parameters such as residual velocity or penetration depth for this building technology is necessary. The model follows the hypotheses for the ballistic response of concrete targets to high velocity impacts, provided with a dominant contribution of shear friction typical of soils. The hypotheses at the basis of the model are consistent with all experimental evidence collected by authors on Adobe. Adobe brick and mortar belong to the material class of concrete,whereas the overall mechanical parameters are determined by the internal soil mixture, including the percentage of fibre reinforcement. Despite its relative simplicity, the model is capable of well predicting ballistic test results currently available in literature for Adobe, including the data of an experimental campaign recently performed by the authors on real Adobe walls in the field.展开更多
Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavi...Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavior can be a source of systemic risk and increasing distrust for the market participants,consequences that call for viable countermeasures.Building on the foundations provided by the extant literature,this study aims to design an agent-based market model capable of reproducing the behavior of the Bitcoin market during the time of an alleged Bitcoin price manipulation that occurred between 2017 and early 2018.The model includes the mechanisms of a limit order book market and several agents associated with different trading strategies,including a fraudulent agent,initialized from empirical data and who performs market manipulation.The model is validated with respect to the Bitcoin price as well as the amount of Bitcoins obtained by the fraudulent agent and the traded volume.Simulation results provide a satisfactory fit to historical data.Several price dips and volume anomalies are explained by the actions of the fraudulent trader,completing the known body of evidence extracted from blockchain activity.The model suggests that the presence of the fraudulent agent was essential to obtain Bitcoin price development in the given time period;without this agent,it would have been very unlikely that the price had reached the heights as it did in late 2017.The insights gained from the model,especially the connection between liquidity and manipulation efficiency,unfold a discussion on how to prevent illicit behavior.展开更多
基金supported by the TRANSIT project(funded by EU Horizon 2020 and the Europe’s Rail Joint Undertaking under grant agreement 881771).
文摘Rolling noise is produced by vibration of the wheels and track,induced by their combined surface roughness.It is important to know the relative contributions of the different sources,as this affects noise control strategies as well as acceptance testing of new rolling stock.Three different techniques are described that aim to use pass-by measurements to separate the wheel and track components of rolling noise.One is based on the TWINS model,which is tuned to measured track vibration.The second is based on the advanced transfer path analysis method,which provides an entirely experimental assessment.The third is based on the pass-by analysis method in combination with static vibroacoustic transfer functions which are obtained using a reciprocity method.The development of these methods is described and comparisons between them are presented using the results from three experimental measurement campaigns.These covered a metro train,a regional train and a high-speed train at a range of speeds.The various methods agree reasonably well in terms of overall trends,with moderate agreement in the mid-frequency region,and less consistent results at low and high frequency.
文摘In 2017,a ballistic phenomenological model was proposed by the authors of Ref.[1] to numerically simulate the experimental depths of small caliber projectiles impacting walls made of adobe.The opportunity for a new model in the field revealed from the observation that two older models recently used by the authors of Ref.[2] shared a linear relationship between the penetration depth P and the impacting velocity v_(O).
基金supported by the TRANSIT project(funded by EU Horizon 2020 and the Europe’s Rail Joint Undertaking under Grant Agreement 881771).
文摘Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.
基金supported by the China Scholarship Council (Grant No.2018-0861-0211).
文摘A two-scale method is proposed to simulate the essential behavior of bolted connections in structures includingelevated temperatures.It is presented,verified,and validated for the structural behavior of two plates,connectedby a bolt,under a variety of loads and elevated temperatures.The method consists of a global-scale model thatsimulates the structure(here the two plates)by volume finite elements,and in which the bolt is modelled bya spring.The spring properties are provided by a smallscale model,in which the bolt is modelled by volumeelements,and for which the boundary conditions are retrieved from the global-scale model.To ensure the small-scale model to be as computationally efficient as possible,simplifications are discussed regarding the materialmodel and the modelling of the threads.For the latter,this leads to the experimentally validated application ofa non-threaded shank with its stress area.It is shown that a non-linear elastic spring is needed for the bolt inthe global-scale model,so the post-peak behavior of the structure can be described efficiently.All types of boltedconnection failure as given by design standards are simulated by the twoscale method,which is successfullyvalidated(except for net section failure)by experiments,and verified by a detailed system model,which modelsthe structure in full detail.The sensitivity to the size of the part of the plate used in the small-scale modelis also studied.Finally,multi-directional load cases,also for elevated temperatures,are studied with the two-scale method and verified with the detailed system model.As a result,a computationally efficient finite elementmodelling approach is provided for all possible combined load actions(except for nut thread failure and netsection failure)and temperatures.The two-scale method is shown to be insightful,for it contains a functionalseparation of scales,revealing their relationships,and consequently,local small-scale non-convergence can behandled.Not presented in this paper,but the two-scale method can be used in e.g.computationally expensive two-way coupled fire-structure simulations,where it is beneficial for distributed computing and densely packed boltconfigurations with stiffplates,for which a single small-scale model may be representative for several connections.
文摘Road throughput can be increased by driving at small inter-vehicle time gaps. The amplification of velocity disturbances in upstream direction, however, poses limitations to the minimum feasible time gap. This effect is covered by the notion of string stability. String-stable behavior is thus considered an essential requirement for the design of automatic distance control systems, which are needed to allow for safe driving at time gaps well below 1 s. Using wireless inter-vehicle communications to provide real-time information of the preceding vehicle, in addition to the information obtained by common Adaptive Cruise Control (ACC) sensors, appears to significantly decrease the feasible time gap, which is shown by practical experiments with a test fleet consisting of six passenger vehicles. The large-scale deployment of this system, known as Cooperative ACC (CACC), however, poses challenges with respect to the reliability of the wireless communication system. A solution for this scalability problem can be found in decreasing the transmission power and/or beaconing rate, or adapting the communications protocol. Although the main CACC objective is to increase road throughput, the first commercial application of CACC is foreseen to be in truck platooning, since short distance following is expected to yield significant fuel savings in this case.
基金the sponsorship of the Strategic Environmental Research and Development Program,project number WP-1583
文摘Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How- ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full- scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.
文摘In this paper,the geomechanical impact of large-scale carbon dioxide(CO) storage in depleted Dutch gas fields is compared with the impact of COstorage in saline aquifers.The geomechanical behaviour of four potential COstorage sites is examined using flow and geomechanical simulations.Many gas reservoirs in the Netherlands are found in fault blocks,one to a few kilometres wide,laterally bounded by sealing faults.Aquifer depletion or re-pressurization in the lateral direction is seldom an issue because of a lack of active aquifers.Reservoir pressure changes are therefore limited to a gas-bearing fault block,while the induced stress changes affect the gas reservoir and extend 1-3 km away into the surrounding rock.Arguments in favour of COstorage in depleted gas fields are:proven seal quality,availability of field data,no record of seal integrity failure by fault reactivation from the seismically active producing Dutch gas fields,and the potential benefits of restoring the virgin formation pressure and stress state to geomechanical stability.On the other hand,COinjection in saline aquifers causes pressure build-up that exceeds the virgin hydrostatic pressure.Stress perturbations resulting from pressure build-up affect large areas,extending tens of kilometres away from the injection wells.Induced stresses in top seals are.however,small and do not exceed a few tenths of megapascal for a pressure build-up of a few megapascals in the storage formation.Geomechanical effects on top seals are weak,but could be enhanced close to the injection zone by the thermal effects of injection.Uncertainties related to characterisation of large areas affected by pressure build-up are significant,and seal quality and continuity are more difficult to be demonstrated for aquifers than for depleted gas reservoirs that have held hydrocarbons for millions of years.
文摘Heavy duty diesel vehicles compliant with current Euro VI/EPA13 emission limits employ aftertreatment systems based on DOC/DPF technology for soot and particulate matter reduction and SCR catalysts with urea dosing for NO x reduction. Traditionally, the majority of the control systems used for urea dosing are map based. However, increasing system complexity combined with real-world performance requirements are a strong motivation to switch to a model-based control approach. Firstly, this article describes a model-based design approach for aftertreatment control development. Focus is on urea dosing control for Euro VI level SCR systems. To achieve the legal emissions limits, including in-service conformity over the vehicle lifetime, advanced model-based control strategies enable maximal NO x conversion in combination with minimum ammonia slip, while ensuring robustness against real-life disturbances. Simulation and experimental results of the control system are presented, which demonstrate the performance and robustness properties. Following this model-based approach, a concept study is performed to explore aftertreatment and control technologies to achieve ultra-low NO x emissions as will be imposed by regulatory bodies in the near future. It is shown that aftertreatment concepts with Passive NO x Adsorber and SCR on DPF are most promising. To optimize overall engine-aftertreatment performance, the modelbased control approach is extended towards Integrated Emission Management(IEM). Based on the actual system state, this supervisory controller minimizes operating costs at each instant in time under all operating conditions. This is key for costoptimal and robust performance.
基金funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.654662
文摘In this context, we applied the radial water jet drilling(RJD) technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bntheim, Germany. For testing the state-of-the-art jetting technology, a jetting experiment was performed to investigate the influence of geological heterogeneity on the jetting performance and the hole geometry, the influence of nozzle geometry and jetting pressure on the rate of penetration, and the possibility of localising the jetting nozzle utilizing acoustic activity. It is observed that the jetted holes can intersect fractures under varying angles, and the jetted holes do not follow a straight path when jetting at ambient surface condition. Cuttings from the jetting process retrieved from the holes can be used to estimate the reservoir rock permeability. Within the quarry, we did not observe a change in the rate of penetration due to jetting pressure variations.Acoustic monitoring was partially successful in estimating the nozzle location. Although the experiments were performed at ambient surface conditions, the results can give recommendations for a downhole application in deep wells.
文摘In this paper, a new one-dimensional phenomenological model is developed for the assessment of the ballistic performance of Adobe. Adobe is a masonry largely spread in areas of the world involved in military operations. Addressing fundamental ballistic parameters such as residual velocity or penetration depth for this building technology is necessary. The model follows the hypotheses for the ballistic response of concrete targets to high velocity impacts, provided with a dominant contribution of shear friction typical of soils. The hypotheses at the basis of the model are consistent with all experimental evidence collected by authors on Adobe. Adobe brick and mortar belong to the material class of concrete,whereas the overall mechanical parameters are determined by the internal soil mixture, including the percentage of fibre reinforcement. Despite its relative simplicity, the model is capable of well predicting ballistic test results currently available in literature for Adobe, including the data of an experimental campaign recently performed by the authors on real Adobe walls in the field.
基金provided by Marie Sklodowska-Curie ITN Horizon 2020-funded project INSIGHTS(call H2020-MSCA-ITN-2017,grant agreement n.765710)NWO—Nederlandse Organisatie voor Wetenschappelijk Onderzoek(Award Number:KIVI.2019.006 HUMAINER AI project)。
文摘Fraudulent actions of a trader or a group of traders can cause substantial disturbance to the market,both directly influencing the price of an asset or indirectly by misin-forming other market participants.Such behavior can be a source of systemic risk and increasing distrust for the market participants,consequences that call for viable countermeasures.Building on the foundations provided by the extant literature,this study aims to design an agent-based market model capable of reproducing the behavior of the Bitcoin market during the time of an alleged Bitcoin price manipulation that occurred between 2017 and early 2018.The model includes the mechanisms of a limit order book market and several agents associated with different trading strategies,including a fraudulent agent,initialized from empirical data and who performs market manipulation.The model is validated with respect to the Bitcoin price as well as the amount of Bitcoins obtained by the fraudulent agent and the traded volume.Simulation results provide a satisfactory fit to historical data.Several price dips and volume anomalies are explained by the actions of the fraudulent trader,completing the known body of evidence extracted from blockchain activity.The model suggests that the presence of the fraudulent agent was essential to obtain Bitcoin price development in the given time period;without this agent,it would have been very unlikely that the price had reached the heights as it did in late 2017.The insights gained from the model,especially the connection between liquidity and manipulation efficiency,unfold a discussion on how to prevent illicit behavior.