Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e....Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.展开更多
This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing chara...This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing characteristics is revealed,and an energy-efficient zoned electric heating anti-icing strategy is proposed.A threedimensional grille model is constructed to systematically analyze the effects of environmental temperature(from−20℃to−4℃),droplet diameter(from 50μm to 500μm),and liquid water content(from 0.5 g/m³to 8 g/m³)on icing rates and blockage of the flow channel.The results indicate that low temperature and high liquid water content significantly exacerbate icing.Under the condition of an environmental temperature of−20℃,droplet diameter of 500μm,and liquid water content of 8 g/m³,the flow channel blockage ratio reaches 30.95%within 10 min.Additionally,as droplet diameter increases,the droplet impingement and icing regions become more concentrated toward the leading edge of blades.To mitigate grille icing in cold environments,an electric heating film configuration is employed for thermal protection.Optimization of the heating strategy reveals that the zoned heating approach,compared to the initial uniform heating scheme,effectively homogenizes surface temperature distribution while reducing total power consumption by 37.47%.This study validates the engineering applicability of the zoned electric heating anti/de-icing strategy,providing theoretical and technical support for the design of anti-icing systems in ship power systems operating in cold maritime regions.展开更多
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most o...Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most of it neglects potential influence factors,leaving the corresponding supporting efficiency questionable.In this paper,we study the landing scheduling problem for carrier aircraft considering the effects of bolting and aerial refueling.Based on the analysis of recovery mode involving the above factors,two types of primary constraints(i.e.,fuel constraint and wake interval constraint)are first described.Then,taking the landing sequencing as decision variables,a combinatorial optimization model with a compound objective function is formulated.Aiming at an efficient solution,an improved firefly algorithm is designed by integrating multiple evolutionary operators.In addition,a dynamic replanning mechanism is introduced to deal with special situations(i.e.,the occurrence of bolting and fuel shortage),where the high efficiency of the designed algorithm facilitates the online scheduling adjustment within seconds.Finally,numerical simulations with sufficient and insufficient fuel cases are both carried out,highlighting the necessity to consider bolting and aerial refueling during the planning procedure.Simulation results reveal that a higher bolting probability,as well as extra aerial refueling operations caused by fuel shortage,will lead to longer recovery complete time.Meanwhile,due to the strong optimum-seeking capability and solution efficiency of the improved algorithm,adaptive scheduling can be generated within milliseconds to deal with special situations,significantly improving the safety and efficiency of the recovery process.An animation is accessible at bilibili.com/video/BV1QprKY2EwD.展开更多
Metallic Zn anodes suffer from hydrogen evolution and dendritic deposition in aqueous electrolytes,resulting in low Coulombic efficiency and poor cyclic stability for aqueous Zn-ion batteries(AZIBs).Constructing stabl...Metallic Zn anodes suffer from hydrogen evolution and dendritic deposition in aqueous electrolytes,resulting in low Coulombic efficiency and poor cyclic stability for aqueous Zn-ion batteries(AZIBs).Constructing stable solid electrolyte interphase(SEI)with strong affinity for Zn and exclusion of water corrosion of Zn metal anodes is a promising strategy to tackle these challenges.In this study,we develop a self-healing ZnO-based SEI film on the Zn electrode surface by employing an aspartame(APM)as a versatile electrolyte additive.The hydrophobic nature and strong Zn affinity of APM can facilitate the dynamic self-healing of ZnO-based SEI film during cyclic Zn plating/stripping process.Benefiting from the superior protection effect of self-healing ZnO-based SEI,the Zn║Cu cells possess an average coulombic efficiency more than 99.59%over 1,000 cycles even at a low current density of 1 m A cm^(-2)-1 m Ah cm^(-2).Furthermore,the Zn║NH_4~+-V_(2)O_5 full cells display a large specific capacity of 150 mAh g^(-1)and high cyclic stability with a capacity retention of 77.8%after 1,750 cycles.In addition,the Zn║Zn cell delivers high temperature adaptability at a wide-temperature range from-5 to 40℃ even under a high DOD of 85.2%.The enhanced capability and durability originate from the self-healing SEI formation enabled by multifunctional APM additives mediating both corrosion suppression and interfacial stabilization.This work presents an inspired and straightforward approach to promote a dendrite-free and widetemperature rechargeable AZIBs energy storage system.展开更多
To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfu...To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfully produced using the directed energy deposition(DED)technique,which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum.Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers,which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69×10^(-4) mm^(3)·(N·m)^(−1) at room temperature to 6.90×10^(-7) mm^(3)·(N·m)^(−1) at 600℃.These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.展开更多
Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades ...Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades in both continuum and discontinuum perspectives leading to significant progress in their comprehending and modeling.This review paper offers an integrated perspective on existing modeling methodologies providing guidance for model selection based on the initial and boundary conditions.By comparing various models,one can better assess the uncertainties in predictions,particularly those related to the conceptual models.The review explores how these methodologies have significantlyenhanced the fundamental understanding of how fractures respond to fluid injection and production,and improved predictive capabilities pertaining to coupled processes within fractured systems.It emphasizes the importance of utilizing advanced computational technologies and thoroughly considering fundamental theories and principles established through past experimental evidence and practical experience.The selection and calibration of model parameters should be based on typical ranges and applied to the specificconditions of applications.The challenges arising from inherent heterogeneity and uncertainties,nonlinear THM coupled processes,scale dependence,and computational limitations in representing fieldscale fractures are discussed.Realizing potential advances on computational capacity calls for methodical conceptualization,mathematical modeling,selection of numerical solution strategies,implementation,and calibration to foster simulation outcomes that intricately reflectthe nuanced complexities of geological phenomena.Future research efforts should focus on innovative approaches to tackle the hurdles and advance the state-of-the-art in this critical fieldof study.展开更多
Fault diagnosis plays a significant role in conducting condition-based maintenance and health management for gas turbines(GTs) to improve reliability and reduce costs. Various diagnosis methods developed by modeling e...Fault diagnosis plays a significant role in conducting condition-based maintenance and health management for gas turbines(GTs) to improve reliability and reduce costs. Various diagnosis methods developed by modeling engine systems or certain components implement faults detection and diagnosis based on the measurement of systemic parameters deviations. However, these conventional model-based methods are hindered by limitations of inability to handle the nonlinear nature, measurement uncertainty, fault coupling and other implementing problems. Recently, the development of artificial intelligence algorithms has provided an effective solution to the above problems, triggering broad researches for data-driven fault diagnosis methods with better accuracy,dynamic performance, and universality. This paper presents a systematic review of recently proposed intelligent fault diagnosis methods for GT engines, according to the classification of shallow learning methods, deep learning methods and hybrid intelligent methods. Moreover, the principle of typical algorithms, the evolution of enhanced methods, and the assessment of pros and cons are summarized to conclude the present status and look forward to the future in the field of GT fault diagnosis. Possible directions for development in method validation, information fusion, and interpretability of intelligent diagnosis methods are concluded in the end to provide insightful concepts for scholars in related fields.展开更多
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi...Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.展开更多
Using the daily precipitation data from the global precipitation measurement(GPM)satellite and meteorological stations from 2001 to 2020,the present study has analyzed the seasonal and interannual spatial-temporal var...Using the daily precipitation data from the global precipitation measurement(GPM)satellite and meteorological stations from 2001 to 2020,the present study has analyzed the seasonal and interannual spatial-temporal variations of the precipitation over the Three-River Headwaters region.The rainfall of the Three-River Headwaters region is verified to have obvious spatial-temporal variations and is mainly concentrated in summer.Then,the empirical orthogonal function(EOF)method is performed and reveals that the summer precipitation in the Three-River Headwaters region mainly shows three patterns,e.g.,the“north−south dipole pattern,”“northeast−southwest diploe pattern,”and“east−west dipole pattern,”among which the northeast−southwest diploe pattern has a strong correlation with the mid-latitude westerlies and summer monsoon.Further analysis reveals that the northeast-southwest diploe pattern of summer precipitation is significantly related to the tripolar sea surface temperature(SST)anomalies(SSTAs)of the North Atlantic Ocean in the preceding winter and the tropical Indian Ocean SSTAs in the simultaneous summer.In the preceding winter,a wave-like pattern zonally propagating along the mid-latitude westerlies is triggered downstream by the North Atlantic tripolar SSTAs.One of the cyclones generated by the wave-like pattern coincidentally locates in Northeastern China and forms a deep northeastern low system in summer.Moreover,the warming of the tropical Indian Ocean SSTAs in summer weakens the Walker circulation,which leads to the strengthening and westward extension of the Western Pacific subtropical high(WPSH).Northerly anomalies from the deep northeastern cyclonic anomalies and southwesterly anomalies from the enhancing WPSH exactly met at the eastern Three-River Headwaters region.Hence,more water vapor and ascending motion anomalies likely appear over the east part of the Three-River Headwaters region.Opposite anomalies cover the south-western Three-River Headwaters region and its surroundings.Then,the northeast-southwest reverse diploe pattern of the summer rainfall in the Three-River Headwaters region is directly produced.展开更多
An automatic detection method is employed to identify and track eddies in the Gulf of Mexico. The physical parameters of the eddies, such as lifespan, radius, and distribution position are first examined and used to d...An automatic detection method is employed to identify and track eddies in the Gulf of Mexico. The physical parameters of the eddies, such as lifespan, radius, and distribution position are first examined and used to determine the spatio–temporal evolution of a strong warm eddy separated from the Mexico current. Then, the influence of this strong warm eddy on sound propagation during its lifespan are comprehensively analyzed with the parabolic equation and explained by using the normal mode and ray theories. Additionally, the influence of mesoscale eddies on the redistribution of total depth-integrated energy among the normal modes in the deep water is also discussed. The variation of arrival angle is investigated to explain the spreading acoustic energy caused by eddies. Overall, the results show that warm eddies can change the propagation paths and cause the convergence zone to broaden and approach the sound source. Moreover,the warm eddy can disperse sound energy and cause the total depth-integrated energy to incline to a lower normal mode.Throughout the whole of these three periods(eddy generating, eddy maturing, and eddy terminating), the fluctuation in the transmission loss is up to 30 dB(depending on the relative location of eddy center to the source).展开更多
This paper discusses the design and software-in-theloop implementation of adaptive formation controllers for fixedwing unmanned aerial vehicles(UAVs) with parametric uncertainty in their structure, namely uncertain ma...This paper discusses the design and software-in-theloop implementation of adaptive formation controllers for fixedwing unmanned aerial vehicles(UAVs) with parametric uncertainty in their structure, namely uncertain mass and inertia. In fact, when aiming at autonomous flight, such parameters cannot assumed to be known as they might vary during the mission(e.g.depending on the payload). Modeling and autopilot design for such autonomous fixed-wing UAVs are presented. The modeling is implemented in Matlab, while the autopilot is based on ArduPilot, a popular open-source autopilot suite. Specifically, the ArduP ilot functionalities are emulated in Matlab according to the Ardupilot documentation and code, which allows us to perform software-in-the-loop simulations of teams of UAVs embedded with actual autopilot protocols. An overview of realtime path planning, trajectory tracking and formation control resulting from the proposed platform is given. The software-inthe-loop simulations show the capability of achieving different UAV formations while handling uncertain mass and inertia.展开更多
Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is p...Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.展开更多
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin...To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm.展开更多
Underwater shock waves generated by pulsed electrical discharges are an effective,economical,and environmentally friendly means of stimulating reservoirs,and this technology has received much attention and intensive r...Underwater shock waves generated by pulsed electrical discharges are an effective,economical,and environmentally friendly means of stimulating reservoirs,and this technology has received much attention and intensive research in the past few years.This paper reviews the main results of recent work on underwater electrical wire explosion(UEWE)for reservoir stimulation.Aplatform is developed for microsecond singlewire explosions in water,and diagnostics based on a voltage probe,current coil,pressure probe,photodiode,and spectrometer are used to characterize the UEWE process and accompanying shock waves.First,the UEWE characteristics under different discharge types are studied and general principles are clarified.Second,the shock-wave generation mechanism is investigated experimentally by interrupting the electrical energy injection into the wire at different stages of the wire-explosion process.It is found that the vaporization process is vital for the formation of shock waves,whereas the energy deposited after voltage collapse has only a limited effect.Furthermore,the relationships between the electrical-circuit and shock-wave parameters are investigated,and an empirical approach is developed for estimating the shock-wave parameters.Third,how the wire material and water state affect the wire-explosion process is studied.To adjust the shock-wave parameters,a promising method concerning energetic material load is proposed and tested.Finally,the fracturing effect of the pulsed-discharge shock waves is discussed,as briefly are some of the difficulties associated with UEWE-based reservoir stimulation.展开更多
Aiming at intercepting large maneuvering targets precisely,the guidance law of advanced self-seeking missiles requires not only inertial line-of-sight(LOS)angular rate but also target maneuvering acceleration.Moreover...Aiming at intercepting large maneuvering targets precisely,the guidance law of advanced self-seeking missiles requires not only inertial line-of-sight(LOS)angular rate but also target maneuvering acceleration.Moreover,the semi-strapdown stabilization platform has lost the ability to measure the inertial LOS angular rate directly,which needs to be extracted by numerical calculation.The differential operation commonly used in traditional methods can magnify the measurement error of the sensor,resulting in insufficient calculation accuracy of the line-of-sight angular rate.By analyzing the mathematical relationship between the missile-target relative motion and the angle tracking system,a multi-process-fusion integrated filter model of relative motion and angle tracking is presented.To overcome the defect that the infrared seeker cannot directly measure the missile-target distance,following the snake-hot-eye visual mechanism,a visual bionic imaging guidance method of estimating the missile-target relative distance from the infrared images is proposed to improve the observability of the filter model.Finally,target-tracking simulations verify that the estimation accuracy of target acceleration is improved by four times.展开更多
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How...Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.展开更多
For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes...For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.展开更多
The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic...The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic suspension technologies, and its key technologies required are given. This paper also makes analysis on using scramjet and magnetic suspension technologies to launch a reusable rocket, and the results show that a normal temperature conductor maglev launch system is feasible.展开更多
To improve the solid lubricity on the worn surface of frictional-pairs, a convenient and simple brush-painting technique was utilized to prepare the solid lubrication graphite coatings. The bonding between the coating...To improve the solid lubricity on the worn surface of frictional-pairs, a convenient and simple brush-painting technique was utilized to prepare the solid lubrication graphite coatings. The bonding between the coatings and substrate is good. To examine the influence of the different graphite contents on the tribological properties of the graphite coatings, the comparison experiments were carried out on the ring-on-block friction tester. The tribological results show a change law of saddle-shape between the tribological properties of graphite coatings and graphite content. When the amount of graphite is up to 28g, the tribological properties of graphite coating are the best. The excellent anti-friction of the graphite coating is associated with the close-packed hexagonal crystal structure of graphite.展开更多
基金the financial support of the National Key Research and Development Plan(2021YFB3302501)the financial support of the National Natural Science Foundation of China(12102077)。
文摘Safe and efficient sortie scheduling on the confined flight deck is crucial for maintaining high combat effectiveness of the aircraft carrier.The primary difficulty exactly lies in the spatiotemporal coordination,i.e.,allocation of limited supporting resources and collision-avoidance between heterogeneous dispatch entities.In this paper,the problem is investigated in the perspective of hybrid flow-shop scheduling problem by synthesizing the precedence,space and resource constraints.Specifically,eight processing procedures are abstracted,where tractors,preparing spots,catapults,and launching are virtualized as machines.By analyzing the constraints in sortie scheduling,a mixed-integer planning model is constructed.In particular,the constraint on preparing spot occupancy is improved to further enhance the sortie efficiency.The basic trajectory library for each dispatch entity is generated and a delayed strategy is integrated to address the collision-avoidance issue.To efficiently solve the formulated HFSP,which is essentially a combinatorial problem with tightly coupled constraints,a chaos-initialized genetic algorithm is developed.The solution framework is validated by the simulation environment referring to the Fort-class carrier,exhibiting higher sortie efficiency when compared to existing strategies.And animation of the simulation results is available at www.bilibili.com/video/BV14t421A7Tt/.The study presents a promising supporting technique for autonomous flight deck operation in the foreseeable future,and can be easily extended to other supporting scenarios,e.g.,ammunition delivery and aircraft maintenance.
基金supported in part by the Ship Preliminary Research Project (No.3020401020102)。
文摘This study addresses the issue of spray icing on the air intake grilles of ship power systems in cold maritime environments.Through numerical simulation methods,the influence of environmental parameters on icing characteristics is revealed,and an energy-efficient zoned electric heating anti-icing strategy is proposed.A threedimensional grille model is constructed to systematically analyze the effects of environmental temperature(from−20℃to−4℃),droplet diameter(from 50μm to 500μm),and liquid water content(from 0.5 g/m³to 8 g/m³)on icing rates and blockage of the flow channel.The results indicate that low temperature and high liquid water content significantly exacerbate icing.Under the condition of an environmental temperature of−20℃,droplet diameter of 500μm,and liquid water content of 8 g/m³,the flow channel blockage ratio reaches 30.95%within 10 min.Additionally,as droplet diameter increases,the droplet impingement and icing regions become more concentrated toward the leading edge of blades.To mitigate grille icing in cold environments,an electric heating film configuration is employed for thermal protection.Optimization of the heating strategy reveals that the zoned heating approach,compared to the initial uniform heating scheme,effectively homogenizes surface temperature distribution while reducing total power consumption by 37.47%.This study validates the engineering applicability of the zoned electric heating anti/de-icing strategy,providing theoretical and technical support for the design of anti-icing systems in ship power systems operating in cold maritime regions.
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.
基金the financial support of the National Natural Science Foundation of China(12102077,12161076)the Natural Science and Technology Program of Liaoning Province(2023-BS-061).
文摘Recovery is a crucial supporting process for carrier aircraft,where a reasonable landing scheduling is expected to guide the fleet landing safely and quickly.Currently,there is little research on this topic,and most of it neglects potential influence factors,leaving the corresponding supporting efficiency questionable.In this paper,we study the landing scheduling problem for carrier aircraft considering the effects of bolting and aerial refueling.Based on the analysis of recovery mode involving the above factors,two types of primary constraints(i.e.,fuel constraint and wake interval constraint)are first described.Then,taking the landing sequencing as decision variables,a combinatorial optimization model with a compound objective function is formulated.Aiming at an efficient solution,an improved firefly algorithm is designed by integrating multiple evolutionary operators.In addition,a dynamic replanning mechanism is introduced to deal with special situations(i.e.,the occurrence of bolting and fuel shortage),where the high efficiency of the designed algorithm facilitates the online scheduling adjustment within seconds.Finally,numerical simulations with sufficient and insufficient fuel cases are both carried out,highlighting the necessity to consider bolting and aerial refueling during the planning procedure.Simulation results reveal that a higher bolting probability,as well as extra aerial refueling operations caused by fuel shortage,will lead to longer recovery complete time.Meanwhile,due to the strong optimum-seeking capability and solution efficiency of the improved algorithm,adaptive scheduling can be generated within milliseconds to deal with special situations,significantly improving the safety and efficiency of the recovery process.An animation is accessible at bilibili.com/video/BV1QprKY2EwD.
基金mainly supported by the National Natural Science Foundation of China[No.52374312]the Science and Technology Innovation Program of Hunan Province[No.2024RC3026]+2 种基金the Natural Science Foundation of Hunan Province[No.2023JJ10076]the Research Institute for Advanced Manufacturing via the project No.1-CD9C,1-CDLR,Research Project of Zhuzhou Smelting Group Co.,Ltd.[ZYGFGH2307071500015]the High Performance Computing Center of Central South University。
文摘Metallic Zn anodes suffer from hydrogen evolution and dendritic deposition in aqueous electrolytes,resulting in low Coulombic efficiency and poor cyclic stability for aqueous Zn-ion batteries(AZIBs).Constructing stable solid electrolyte interphase(SEI)with strong affinity for Zn and exclusion of water corrosion of Zn metal anodes is a promising strategy to tackle these challenges.In this study,we develop a self-healing ZnO-based SEI film on the Zn electrode surface by employing an aspartame(APM)as a versatile electrolyte additive.The hydrophobic nature and strong Zn affinity of APM can facilitate the dynamic self-healing of ZnO-based SEI film during cyclic Zn plating/stripping process.Benefiting from the superior protection effect of self-healing ZnO-based SEI,the Zn║Cu cells possess an average coulombic efficiency more than 99.59%over 1,000 cycles even at a low current density of 1 m A cm^(-2)-1 m Ah cm^(-2).Furthermore,the Zn║NH_4~+-V_(2)O_5 full cells display a large specific capacity of 150 mAh g^(-1)and high cyclic stability with a capacity retention of 77.8%after 1,750 cycles.In addition,the Zn║Zn cell delivers high temperature adaptability at a wide-temperature range from-5 to 40℃ even under a high DOD of 85.2%.The enhanced capability and durability originate from the self-healing SEI formation enabled by multifunctional APM additives mediating both corrosion suppression and interfacial stabilization.This work presents an inspired and straightforward approach to promote a dendrite-free and widetemperature rechargeable AZIBs energy storage system.
基金supported by Guangdong Major Project of Basic and Applied Basic Research,China(No.2019B030302010)the Joint Research Scheme sponsored by the Research Grants Council of the Hong Kong Special Administrative Region,China and National Natural Science Foundation of China(Nos.N_PolyU523/20 and 52061160483)+4 种基金the National Natural Science Foundation of China(Nos.52104362,52071222,52471179,52471180 and 52001221)the National Key R&D Program of China(No.2022YFA1603800)the National Key Research and Development Program of China(No.2021YFA0716302)Guangdong Provincial Quantum Science Strategic Initiative(No.GDZX2301001)Guangdong Basic and Applied Basic Research,China(No.2020B1515130007).
文摘To fulfill the demands of applications under severe operational conditions,alloys should possess outstanding wear resistance at elevated temperatures.A Ti-Hf-Nb-V based refractory high entropy alloy(RHEA)was successfully produced using the directed energy deposition(DED)technique,which avoided the formation of fatal defects and showcased well-performed mechanical properties across a broad temperature spectrum.Strategic design of the oxidation sequence enabled the early formation of oxide nanolayers,which can form a polycrystalline oxide nanocoating under a complex stress condition to drastically reduce the wear rate from 2.69×10^(-4) mm^(3)·(N·m)^(−1) at room temperature to 6.90×10^(-7) mm^(3)·(N·m)^(−1) at 600℃.These results indicate that the application of additive manufacturing to fabricate RHEAs with superior wear resistance at high temperatures paves the way for the development of functional coatings designed to withstand extreme conditions.
基金funding from the European Research Council(ERC)under the European Union’s Horizon 2020 Research and Innovation Program through the Starting Grant GEoREST(grant agreement No.801809)support by MICIU/AEI/10.13039/501100011033 and by"European Union Next Generation EU/PRTR"through the‘Ramón y Cajal’fellowship(reference RYC2021-032780-I)+9 种基金funding by MICIU/AEI/10.13039/501100011033 and by“ERDF,EU”through the‘HydroPoreII’project(reference PID2022-137652NBC44)support by the Institute for Korea Spent Nuclear Fuel(iKSNF)National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT,MSIT)(2021M2E1A1085196)support by the Swedish Radiation Safety(SSM),Swedish Transport Administration(Trafikverket),Swedish Rock Engineering Foundation(BeFo),and Nordic Energy Research(Grant 187658)supported by the US Department of Energy(DOE),the Officeof Nuclear Energy,Spent Fuel and Waste Science and Technology Campaign,and by the US Department of Energy(DOE),the Office of Basic Energy Sciences,Chemical Sciences,Geosciences,and Biosciences Division both under Contract Number DE-AC02-05CH11231 with Lawrence Berkeley National Laboratorysupport from the US National Science Foundation(grant CMMI-2239630)funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation programme(grant agreement No.101002507)the UK Natural Environment Research Council(NERC)for funding SeisGreen Project(Grant No.NE/W009293/1)which supported this workthe Royal Society UK for supporting this research through fellowship UF160443IMEDEA is an accredited"Maria de Maeztu Excellence Unit"(Grant CEX2021-001198,funded by MICIU/AEI/10.13039/501100011033).
文摘Coupled thermo-hydro-mechanical(THM)processes in fractured rock are playing a crucial role in geoscience and geoengineering applications.Diverse and conceptually distinct approaches have emerged over the past decades in both continuum and discontinuum perspectives leading to significant progress in their comprehending and modeling.This review paper offers an integrated perspective on existing modeling methodologies providing guidance for model selection based on the initial and boundary conditions.By comparing various models,one can better assess the uncertainties in predictions,particularly those related to the conceptual models.The review explores how these methodologies have significantlyenhanced the fundamental understanding of how fractures respond to fluid injection and production,and improved predictive capabilities pertaining to coupled processes within fractured systems.It emphasizes the importance of utilizing advanced computational technologies and thoroughly considering fundamental theories and principles established through past experimental evidence and practical experience.The selection and calibration of model parameters should be based on typical ranges and applied to the specificconditions of applications.The challenges arising from inherent heterogeneity and uncertainties,nonlinear THM coupled processes,scale dependence,and computational limitations in representing fieldscale fractures are discussed.Realizing potential advances on computational capacity calls for methodical conceptualization,mathematical modeling,selection of numerical solution strategies,implementation,and calibration to foster simulation outcomes that intricately reflectthe nuanced complexities of geological phenomena.Future research efforts should focus on innovative approaches to tackle the hurdles and advance the state-of-the-art in this critical fieldof study.
基金financially supported by the National Natural Science Foundation of China (No. 61890921, 61890923, and 52372371)the key projects of Aero Engine and Gas Turbine Basic Science Center (No. P2022-B-V-001-001 and P2022B-V-002-001)。
文摘Fault diagnosis plays a significant role in conducting condition-based maintenance and health management for gas turbines(GTs) to improve reliability and reduce costs. Various diagnosis methods developed by modeling engine systems or certain components implement faults detection and diagnosis based on the measurement of systemic parameters deviations. However, these conventional model-based methods are hindered by limitations of inability to handle the nonlinear nature, measurement uncertainty, fault coupling and other implementing problems. Recently, the development of artificial intelligence algorithms has provided an effective solution to the above problems, triggering broad researches for data-driven fault diagnosis methods with better accuracy,dynamic performance, and universality. This paper presents a systematic review of recently proposed intelligent fault diagnosis methods for GT engines, according to the classification of shallow learning methods, deep learning methods and hybrid intelligent methods. Moreover, the principle of typical algorithms, the evolution of enhanced methods, and the assessment of pros and cons are summarized to conclude the present status and look forward to the future in the field of GT fault diagnosis. Possible directions for development in method validation, information fusion, and interpretability of intelligent diagnosis methods are concluded in the end to provide insightful concepts for scholars in related fields.
基金Project supported by the IACAS Young Elite Researcher Project(Grant No.QNYC201703)the Rising Star Foundation of Integrated Research Center for Islands and Reefs Sciences,CAS(Grant No.ZDRW-XH-2021-2-04)the Key Laboratory Foundation of Acoustic Science and Technology(Grant No.2021-JCJQ-LB-066-08).
文摘Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves.
基金Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0105)National Natural Science Foundation of China(91937000)。
文摘Using the daily precipitation data from the global precipitation measurement(GPM)satellite and meteorological stations from 2001 to 2020,the present study has analyzed the seasonal and interannual spatial-temporal variations of the precipitation over the Three-River Headwaters region.The rainfall of the Three-River Headwaters region is verified to have obvious spatial-temporal variations and is mainly concentrated in summer.Then,the empirical orthogonal function(EOF)method is performed and reveals that the summer precipitation in the Three-River Headwaters region mainly shows three patterns,e.g.,the“north−south dipole pattern,”“northeast−southwest diploe pattern,”and“east−west dipole pattern,”among which the northeast−southwest diploe pattern has a strong correlation with the mid-latitude westerlies and summer monsoon.Further analysis reveals that the northeast-southwest diploe pattern of summer precipitation is significantly related to the tripolar sea surface temperature(SST)anomalies(SSTAs)of the North Atlantic Ocean in the preceding winter and the tropical Indian Ocean SSTAs in the simultaneous summer.In the preceding winter,a wave-like pattern zonally propagating along the mid-latitude westerlies is triggered downstream by the North Atlantic tripolar SSTAs.One of the cyclones generated by the wave-like pattern coincidentally locates in Northeastern China and forms a deep northeastern low system in summer.Moreover,the warming of the tropical Indian Ocean SSTAs in summer weakens the Walker circulation,which leads to the strengthening and westward extension of the Western Pacific subtropical high(WPSH).Northerly anomalies from the deep northeastern cyclonic anomalies and southwesterly anomalies from the enhancing WPSH exactly met at the eastern Three-River Headwaters region.Hence,more water vapor and ascending motion anomalies likely appear over the east part of the Three-River Headwaters region.Opposite anomalies cover the south-western Three-River Headwaters region and its surroundings.Then,the northeast-southwest reverse diploe pattern of the summer rainfall in the Three-River Headwaters region is directly produced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘An automatic detection method is employed to identify and track eddies in the Gulf of Mexico. The physical parameters of the eddies, such as lifespan, radius, and distribution position are first examined and used to determine the spatio–temporal evolution of a strong warm eddy separated from the Mexico current. Then, the influence of this strong warm eddy on sound propagation during its lifespan are comprehensively analyzed with the parabolic equation and explained by using the normal mode and ray theories. Additionally, the influence of mesoscale eddies on the redistribution of total depth-integrated energy among the normal modes in the deep water is also discussed. The variation of arrival angle is investigated to explain the spreading acoustic energy caused by eddies. Overall, the results show that warm eddies can change the propagation paths and cause the convergence zone to broaden and approach the sound source. Moreover,the warm eddy can disperse sound energy and cause the total depth-integrated energy to incline to a lower normal mode.Throughout the whole of these three periods(eddy generating, eddy maturing, and eddy terminating), the fluctuation in the transmission loss is up to 30 dB(depending on the relative location of eddy center to the source).
基金supported by the Fundamental Research Funds for the Central Universities(4007019109)(RECON-STRUCT)the Special Guiding Funds for Double First-class(4007019201)the Joint TU Delft-CSSC Project ‘Multi-agent Coordination with Networked Constraints’(MULTI-COORD)
文摘This paper discusses the design and software-in-theloop implementation of adaptive formation controllers for fixedwing unmanned aerial vehicles(UAVs) with parametric uncertainty in their structure, namely uncertain mass and inertia. In fact, when aiming at autonomous flight, such parameters cannot assumed to be known as they might vary during the mission(e.g.depending on the payload). Modeling and autopilot design for such autonomous fixed-wing UAVs are presented. The modeling is implemented in Matlab, while the autopilot is based on ArduPilot, a popular open-source autopilot suite. Specifically, the ArduP ilot functionalities are emulated in Matlab according to the Ardupilot documentation and code, which allows us to perform software-in-the-loop simulations of teams of UAVs embedded with actual autopilot protocols. An overview of realtime path planning, trajectory tracking and formation control resulting from the proposed platform is given. The software-inthe-loop simulations show the capability of achieving different UAV formations while handling uncertain mass and inertia.
基金supported by the President Award of Chinese Academy of Sciences (O729031511)
文摘Frequency-invariant beamformer (FIB) design is a key issue in wideband array signal processing. To use commonly wideband linear array with tapped delay line (TDL) structure and complex weights, the FIB design is provided according to the rule of minimizing the sidelobe level of the beampattern at the reference frequency while keeping the distortionless response constraint in the mainlobe direction at the reference frequency, the norm constraint of the weight vector and the amplitude constraint of the averaged spatial response variation (SRV). This kind of beamformer design problem can be solved with the interior-point method after being converted to the form of standard second order cone programming (SOCP). The computer simulations are presented which illustrate the effectiveness of our FIB design method for the wideband linear array with TDL structure and complex weights.
基金Sponsored by Beijing Priority Laboratory Fund of China(SYS10070522)
文摘To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm.
基金supported in part by the National High Technology Research and Development Program of China(Grant No.2013AA064502)the National Natural Science Foundation of China(Grant No.51907007)+1 种基金the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect(Grant No.SKLIPR1906)the State Key Laboratory of Electrical Insulation and Power Equipment(Grant No.EIPE20204).
文摘Underwater shock waves generated by pulsed electrical discharges are an effective,economical,and environmentally friendly means of stimulating reservoirs,and this technology has received much attention and intensive research in the past few years.This paper reviews the main results of recent work on underwater electrical wire explosion(UEWE)for reservoir stimulation.Aplatform is developed for microsecond singlewire explosions in water,and diagnostics based on a voltage probe,current coil,pressure probe,photodiode,and spectrometer are used to characterize the UEWE process and accompanying shock waves.First,the UEWE characteristics under different discharge types are studied and general principles are clarified.Second,the shock-wave generation mechanism is investigated experimentally by interrupting the electrical energy injection into the wire at different stages of the wire-explosion process.It is found that the vaporization process is vital for the formation of shock waves,whereas the energy deposited after voltage collapse has only a limited effect.Furthermore,the relationships between the electrical-circuit and shock-wave parameters are investigated,and an empirical approach is developed for estimating the shock-wave parameters.Third,how the wire material and water state affect the wire-explosion process is studied.To adjust the shock-wave parameters,a promising method concerning energetic material load is proposed and tested.Finally,the fracturing effect of the pulsed-discharge shock waves is discussed,as briefly are some of the difficulties associated with UEWE-based reservoir stimulation.
基金sponsored by the National Natural Science Foundation of China under Grant No.51979275the Joint Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering and Tsinghua—Ningxia Yinchuan Joint Institute of Internet of Waters on Digital Water Governance under Grant No.sklhse-2022-Iow08+2 种基金the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources under Grant No.KF-2021-06-115the National Key R&D Program of China under Grant No.2018YFD0700603the 2115 Talent Development Program of China Agricultural University.
文摘Aiming at intercepting large maneuvering targets precisely,the guidance law of advanced self-seeking missiles requires not only inertial line-of-sight(LOS)angular rate but also target maneuvering acceleration.Moreover,the semi-strapdown stabilization platform has lost the ability to measure the inertial LOS angular rate directly,which needs to be extracted by numerical calculation.The differential operation commonly used in traditional methods can magnify the measurement error of the sensor,resulting in insufficient calculation accuracy of the line-of-sight angular rate.By analyzing the mathematical relationship between the missile-target relative motion and the angle tracking system,a multi-process-fusion integrated filter model of relative motion and angle tracking is presented.To overcome the defect that the infrared seeker cannot directly measure the missile-target distance,following the snake-hot-eye visual mechanism,a visual bionic imaging guidance method of estimating the missile-target relative distance from the infrared images is proposed to improve the observability of the filter model.Finally,target-tracking simulations verify that the estimation accuracy of target acceleration is improved by four times.
基金Supported by National Natural Science Foundation of China(Grant No.61773060).
文摘Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201901D211242201701D221017)。
文摘For localisation of unknown non-cooperative targets in space,the existence of interference points causes inaccuracy of pose estimation while utilizing point cloud registration.To address this issue,this paper proposes a new iterative closest point(ICP)algorithm combined with distributed weights to intensify the dependability and robustness of the non-cooperative target localisation.As interference points in space have not yet been extensively studied,we classify them into two broad categories,far interference points and near interference points.For the former,the statistical outlier elimination algorithm is employed.For the latter,the Gaussian distributed weights,simultaneously valuing with the variation of the Euclidean distance from each point to the centroid,are commingled to the traditional ICP algorithm.In each iteration,the weight matrix W in connection with the overall localisation is obtained,and the singular value decomposition is adopted to accomplish high-precision estimation of the target pose.Finally,the experiments are implemented by shooting the satellite model and setting the position of interference points.The outcomes suggest that the proposed algorithm can effectively suppress interference points and enhance the accuracy of non-cooperative target pose estimation.When the interference point number reaches about 700,the average error of angle is superior to 0.88°.
文摘The scramjet and maglev engineering technology development and trends at home and abroad are firstly presented in this paper. A new launch mode of space transportation system is proposed based on scramjet and magnetic suspension technologies, and its key technologies required are given. This paper also makes analysis on using scramjet and magnetic suspension technologies to launch a reusable rocket, and the results show that a normal temperature conductor maglev launch system is feasible.
文摘To improve the solid lubricity on the worn surface of frictional-pairs, a convenient and simple brush-painting technique was utilized to prepare the solid lubrication graphite coatings. The bonding between the coatings and substrate is good. To examine the influence of the different graphite contents on the tribological properties of the graphite coatings, the comparison experiments were carried out on the ring-on-block friction tester. The tribological results show a change law of saddle-shape between the tribological properties of graphite coatings and graphite content. When the amount of graphite is up to 28g, the tribological properties of graphite coating are the best. The excellent anti-friction of the graphite coating is associated with the close-packed hexagonal crystal structure of graphite.