Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the...Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,...A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms.展开更多
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy b...The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.展开更多
This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional m...This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.展开更多
Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors...Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors and operations are compromised,which can lead to big problems,disruptions,failures and blackouts.In response to this challenge,this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory(Bi-LSTM)networks and employs explanatory methods from Artificial Intelligence(AI).Not only does the suggested architecture detect potential fraud with high accuracy,but it also makes its decisions transparent,enabling operators to take appropriate action.Themethod developed here utilizesmodel-free,interpretable tools to identify essential input elements,thereby making predictions more understandable and usable.Enhancing detection performance is made possible by correcting class imbalance using Synthetic Minority Over-sampling Technique(SMOTE)-based data balancing.Benchmark power system data confirms that the model functions correctly through detailed experiments.Experimental results showed that Bi-LSTM+Explainable AI(XAI)achieved an average accuracy of 94%,surpassing XGBoost(89%)and Bagging(84%),while ensuring explainability and a high level of robustness across various operating scenarios.By conducting an ablation study,we find that bidirectional recursive modeling and ReLU activation help improve generalization and model predictability.Additionally,examining model decisions through LIME enables us to identify which features are crucial for making smart grid operational decisions in real time.The research offers a practical and flexible approach for detecting FDI attacks,improving the security of cyber-physical systems,and facilitating the deployment of AI in energy infrastructure.展开更多
Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion...Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.展开更多
Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC syst...Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.展开更多
This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as ru...This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies.展开更多
The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines ...The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.展开更多
Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for...Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.展开更多
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the la...Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the last few decades, and the difficulties of sustainably providing social services that meet the required standards. The development of refugee settlements assumed that forcibly displaced people would return to their places or countries of origin. Unfortunately, displacement situations are prolonged indefinitely, forcing these people to spend most of their lives in conditions that are often deplorable and substandard, and therefore unsustainable. In most cases, the establishment of refugee settlements is triggered by an emergency caused by an influx of forcibly displaced people, who need to be accommodated urgently and provided with some form of international assistance and protection. This leaves little or no time for proper planning for long-term development as required. In addition, the current approach to temporary settlement harms the environment and can strain limited resources with ad hoc development models that have exacerbated difficulties. As a result, living conditions in refugee settlements have deteriorated over the last few decades and continue to pose challenges as to how best to design, plan, and sustain settlements over time. To contribute to addressing these challenges, this study proposes a new methodology supported by Model-Based Systems Engineering (MBSE) and a Systems Modeling Language (SysML) to develop a typical sustainable human settlement system model, which has functionally and operationally executed using a Systems Engineering (SE) approach. To assess the sustainability capacity of the proposed system, this work applies a matrix of crossed impact multiplication through a case study by conducting a system capacity interdependence analysis (SCIA) using the MICMAC methodology (Cross-impact matrix multiplication applied to classification) to assess the interdependency that exist between the sub-systems categories to deliver services at the system level. The sustainability analysis results based on capacity variables influence and dependency models shows that development activities in the settlement are unstable and, therefore, unsustainable since there is no apparent difference between the influential and dependent data used for the assessment. These results illustrate that an integrated system could improve human settlements’ sustainability and that capacity building in service delivery is beneficial and necessary.展开更多
The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficultie...The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.展开更多
This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent s...This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method.展开更多
Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate...Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer.In this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in Arabic.To support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o.between the model complexity and the overall model performance.Some fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA models.So far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions.Hence,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA systems.Experiments indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that a.ects the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model complexity.The Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions.展开更多
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi...The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.展开更多
Optical synapses have an ability to perceive and remember visual information,making them expected to provide more intelligent and efficient visual solutions for humans.As a new type of artificial visual sensory device...Optical synapses have an ability to perceive and remember visual information,making them expected to provide more intelligent and efficient visual solutions for humans.As a new type of artificial visual sensory devices,photoelectric memristors can fully simulate synaptic performance and have great prospects in the development of biological vision.However,due to the urgent problems of nonlinear conductance and high-energy consumption,its further application in high-precision control scenarios and integration is hindered.In this work,we report an optoelectronic memristor with a structure of TiN/CeO_(2)/ZnO/ITO/Mica,which can achieve minimal energy consumption(187 pJ)at a single pulse(0.5 V,5 ms).Under the stimulation of continuous pulses,linearity can be achieved up to 99.6%.In addition,the device has a variety of synaptic functions under the combined action of photoelectric,which can be used for advanced vision.By utilizing its typical long-term memory characteristics,we achieved image recognition and long-term memory in a 3×3 synaptic array and further achieved female facial feature extraction behavior with an activation rate of over 92%.Moreover,we also use the linear response characteristic of the device to design and implement the night meeting behavior of autonomous vehicles based on the hardware platform.This work highlights the potential of photoelectric memristors for advancing neuromorphic vision systems,offering a new direction for bionic eyes and visual automation technology.展开更多
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
基金The National Science Foundation funded this research under the Dy-namics of Coupled Natural and Human Systems program(Grants No.DEB-1212183 and BCS-1826839)support from San Diego State University and Auburn University.
文摘A significant number and range of challenges besetting sustainability can be traced to the actions and inter actions of multiple autonomous agents(people mostly)and the entities they create(e.g.,institutions,policies,social network)in the corresponding social-environmental systems(SES).To address these challenges,we need to understand decisions made and actions taken by agents,the outcomes of their actions,including the feedbacks on the corresponding agents and environment.The science of complex adaptive systems-complex adaptive sys tems(CAS)science-has a significant potential to handle such challenges.We address the advantages of CAS science for sustainability by identifying the key elements and challenges in sustainability science,the generic features of CAS,and the key advances and challenges in modeling CAS.Artificial intelligence and data science combined with agent-based modeling promise to improve understanding of agents’behaviors,detect SES struc tures,and formulate SES mechanisms.
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
基金supported by the National Natural Science Foundation of China(71901212)the Science and Technology Innovation Program of Hunan Province(2020RC4046).
文摘The belief rule-based(BRB)system has been popular in complexity system modeling due to its good interpretability.However,the current mainstream optimization methods of the BRB systems only focus on modeling accuracy but ignore the interpretability.The single-objective optimization strategy has been applied in the interpretability-accuracy trade-off by inte-grating accuracy and interpretability into an optimization objec-tive.But the integration has a greater impact on optimization results with strong subjectivity.Thus,a multi-objective optimiza-tion framework in the modeling of BRB systems with inter-pretability-accuracy trade-off is proposed in this paper.Firstly,complexity and accuracy are taken as two independent opti-mization goals,and uniformity as a constraint to give the mathe-matical description.Secondly,a classical multi-objective opti-mization algorithm,nondominated sorting genetic algorithm II(NSGA-II),is utilized as an optimization tool to give a set of BRB systems with different accuracy and complexity.Finally,a pipeline leakage detection case is studied to verify the feasibility and effectiveness of the developed multi-objective optimization.The comparison illustrates that the proposed multi-objective optimization framework can effectively avoid the subjectivity of single-objective optimization,and has capability of joint optimiz-ing the structure and parameters of BRB systems with inter-pretability-accuracy trade-off.
基金supported in part by Shanghai Rising-Star Program,China under grant 22QA1409400in part by National Natural Science Foundation of China under grant 62473287 and 62088101in part by Shanghai Municipal Science and Technology Major Project under grant 2021SHZDZX0100.
文摘This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy.
基金the Deanship of Scientific Research and Libraries in Princess Nourah bint Abdulrahman University for funding this research work through the Research Group project,Grant No.(RG-1445-0064).
文摘Although digital changes in power systems have added more ways to monitor and control them,these changes have also led to new cyber-attack risks,mainly from False Data Injection(FDI)attacks.If this happens,the sensors and operations are compromised,which can lead to big problems,disruptions,failures and blackouts.In response to this challenge,this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory(Bi-LSTM)networks and employs explanatory methods from Artificial Intelligence(AI).Not only does the suggested architecture detect potential fraud with high accuracy,but it also makes its decisions transparent,enabling operators to take appropriate action.Themethod developed here utilizesmodel-free,interpretable tools to identify essential input elements,thereby making predictions more understandable and usable.Enhancing detection performance is made possible by correcting class imbalance using Synthetic Minority Over-sampling Technique(SMOTE)-based data balancing.Benchmark power system data confirms that the model functions correctly through detailed experiments.Experimental results showed that Bi-LSTM+Explainable AI(XAI)achieved an average accuracy of 94%,surpassing XGBoost(89%)and Bagging(84%),while ensuring explainability and a high level of robustness across various operating scenarios.By conducting an ablation study,we find that bidirectional recursive modeling and ReLU activation help improve generalization and model predictability.Additionally,examining model decisions through LIME enables us to identify which features are crucial for making smart grid operational decisions in real time.The research offers a practical and flexible approach for detecting FDI attacks,improving the security of cyber-physical systems,and facilitating the deployment of AI in energy infrastructure.
基金performed at large-scale research facility"Beam-M"of Bauman Moscow State Technical University following the government task by the Ministry of Science and Higher Education of the Russian Federation(No.FSFN-2024-0007).
文摘Thrust-vectoring capability has become a critical feature for propulsion systems as space missions move from static to dynamic.Thrust-vectoring is a well-developed area of rocket engine science.For electric propulsion,however,it is an evolving field that has taken a new leap forward in recent years.A review and analysis of thrust-vectoring schemes for electric propulsion systems have been conducted.The scope of this review includes thrust-vectoring schemes that can be implemented for electrostatic,electromagnetic,and beam-driven thrusters.A classification of electric propulsion schemes that provide thrust-vectoring capability is developed.More attention is given to schemes implemented in laboratory prototypes and flight models.The final part is devoted to a discussion on the suitability of different electric propulsion systems with thrust-vectoring capability for modern space mission operations.The thrust-vectoring capability of electric propulsion is necessary for inner and outer space satellites,which are at a disadvantage with conventional unidirectional propulsion systems due to their limited maneuverability.
基金supported in part by the National Natural Science Foundation of China(62373337,62373333)the 111 Project(B17040)State Key Laboratory of Advanced Electromagnetic Technology(2024KF002)
文摘Dear Editor,This letter is concerned with stability analysis and stabilization design for sampled-data based load frequency control(LFC) systems via a data-driven method. By describing the dynamic behavior of LFC systems based on a data-based representation, a stability criterion is derived to obtain the admissible maximum sampling interval(MSI) for a given controller and a design condition of the PI-type controller is further developed to meet the required MSI. Finally, the effectiveness of the proposed methods is verified by a case study.
文摘This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies.
文摘The integration of artificial intelligence into the development and production of mechatronic products offers a substantial opportunity to enhance efficiency, adaptability, and system performance. This paper examines the utilization of reinforcement learning as a control strategy, with a particular focus on its deployment in pivotal stages of the product development lifecycle, specifically between system architecture and system integration and verification. A controller based on reinforcement learning was developed and evaluated in comparison to traditional proportional-integral controllers in dynamic and fault-prone environments. The results illustrate the superior adaptability, stability, and optimization potential of the reinforcement learning approach, particularly in addressing dynamic disturbances and ensuring robust performance. The study illustrates how reinforcement learning can facilitate the transition from conceptual design to implementation by automating optimization processes, enabling interface automation, and enhancing system-level testing. Based on the aforementioned findings, this paper presents future directions for research, which include the integration of domain-specific knowledge into the reinforcement learning process and the validation of this process in real-world environments. The results underscore the potential of artificial intelligence-driven methodologies to revolutionize the design and deployment of intelligent mechatronic systems.
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
基金support from the Contract Research(“Development of Breathable Fabrics with Nano-Electrospun Membrane”,CityU ref.:9231419“Research and application of antibacterial and healing-promoting smart nanofiber dressing for children’s burn wounds”,CityU ref:PJ9240111)+1 种基金the National Natural Science Foundation of China(“Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers”,Grant No.51673162)Startup Grant of CityU(“Laboratory of Wearable Materials for Healthcare”,Grant No.9380116).
文摘Radiative cooling systems(RCSs)possess the distinctive capability to dissipate heat energy via solar and thermal radiation,making them suitable for thermal regulation and energy conservation applications,essential for mitigating the energy crisis.A comprehensive review connecting the advancements in engineered radiative cooling systems(ERCSs),encompassing material and structural design as well as thermal and energy-related applications,is currently absent.Herein,this review begins with a concise summary of the essential concepts of ERCSs,followed by an introduction to engineered materials and structures,containing nature-inspired designs,chromatic materials,meta-structural configurations,and multilayered constructions.It subsequently encapsulates the primary applications,including thermal-regulating textiles and energy-saving devices.Next,it highlights the challenges of ERCSs,including maximized thermoregulatory effects,environmental adaptability,scalability and sustainability,and interdisciplinary integration.It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
文摘Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the last few decades, and the difficulties of sustainably providing social services that meet the required standards. The development of refugee settlements assumed that forcibly displaced people would return to their places or countries of origin. Unfortunately, displacement situations are prolonged indefinitely, forcing these people to spend most of their lives in conditions that are often deplorable and substandard, and therefore unsustainable. In most cases, the establishment of refugee settlements is triggered by an emergency caused by an influx of forcibly displaced people, who need to be accommodated urgently and provided with some form of international assistance and protection. This leaves little or no time for proper planning for long-term development as required. In addition, the current approach to temporary settlement harms the environment and can strain limited resources with ad hoc development models that have exacerbated difficulties. As a result, living conditions in refugee settlements have deteriorated over the last few decades and continue to pose challenges as to how best to design, plan, and sustain settlements over time. To contribute to addressing these challenges, this study proposes a new methodology supported by Model-Based Systems Engineering (MBSE) and a Systems Modeling Language (SysML) to develop a typical sustainable human settlement system model, which has functionally and operationally executed using a Systems Engineering (SE) approach. To assess the sustainability capacity of the proposed system, this work applies a matrix of crossed impact multiplication through a case study by conducting a system capacity interdependence analysis (SCIA) using the MICMAC methodology (Cross-impact matrix multiplication applied to classification) to assess the interdependency that exist between the sub-systems categories to deliver services at the system level. The sustainability analysis results based on capacity variables influence and dependency models shows that development activities in the settlement are unstable and, therefore, unsustainable since there is no apparent difference between the influential and dependent data used for the assessment. These results illustrate that an integrated system could improve human settlements’ sustainability and that capacity building in service delivery is beneficial and necessary.
文摘The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.
基金supported in part by the National Key Research and Development Program of China(2021YFE0206100)the National Natural Science Foundation of China(62425310,62073321)+2 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029,JCKY2020130C025)the Science and Technology Development FundMacao SAR(FDCT-22-009-MISE,0060/2021/A2,0015/2020/AMJ)
文摘This paper highlights the utilization of parallel control and adaptive dynamic programming(ADP) for event-triggered robust parallel optimal consensus control(ETRPOC) of uncertain nonlinear continuous-time multiagent systems(MASs).First, the parallel control system, which consists of a virtual control variable and a specific auxiliary variable obtained from the coupled Hamiltonian, allows general systems to be transformed into affine systems. Of interest is the fact that the parallel control technique's introduction provides an unprecedented perspective on eliminating the negative effects of disturbance. Then, an eventtriggered mechanism is adopted to save communication resources while ensuring the system's stability. The coupled HamiltonJacobi(HJ) equation's solution is approximated using a critic neural network(NN), whose weights are updated in response to events. Furthermore, theoretical analysis reveals that the weight estimation error is uniformly ultimately bounded(UUB). Finally,numerical simulations demonstrate the effectiveness of the developed ETRPOC method.
文摘Visual question answering(VQA)is a multimodal task,involving a deep understanding of the image scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the appropriate answer.In this paper,we propose a VQA system intended to answer yes/no questions about real-world images,in Arabic.To support a robust VQA system,we work in two directions:(1)Using deep neural networks to semantically represent the given image and question in a fine-grainedmanner,namely ResNet-152 and Gated Recurrent Units(GRU).(2)Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o.between the model complexity and the overall model performance.Some fusion techniques could significantly increase the model complexity,which seriously limits their applicability for VQA models.So far,there is no evidence of how efficient these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions.Hence,a comparative analysis is conducted between eight bilinear pooling fusion techniques,in terms of their ability to reduce themodel complexity and improve themodel performance in this case of VQA systems.Experiments indicate that these multimodal bilinear pooling fusion techniques have improved the VQA model’s performance,until reaching the best performance of 89.25%.Further,experiments have proven that the number of answers in the developed VQA system is a critical factor that a.ects the effectiveness of these multimodal bilinear pooling techniques in achieving their main objective of reducing the model complexity.The Multimodal Local Perception Bilinear Pooling(MLPB)technique has shown the best balance between the model complexity and its performance,for VQA systems designed to answer yes/no questions.
文摘The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems.
基金supported by Science and Technology Project of Hebei Education Department(grant no.QN2023092)High-level Talent Research Startup Project of Hebei University(grant no.521100221071,521000981426,521100223225)+17 种基金National Key R&D Plan"Nano Frontier"Key Special Project(Grant Nos.2024YFA1208400,2021YFA1200502)National Key R&D Program Disruptive Technology Innovation Project(Grant No.2024YFF1504300)National Natural Science Foundation of China(Grant Nos.62004056,62104058,Grant No.61874158)National Major R&D Project Cultivation Projects(Grant No.92164109)Natural Science Foundation of Hebei Province(Grant Nos.F2021201045,F2021201022,F2022201054,F2023201044,F2022201002)Special Support Funds for National High-Level Talents(Grant No.041500120001)Hebei Province Yanzhao Young Scientist Project(Grant No.F2023201076)Support Program for the Top Young Talents of Hebei Province(Grant No.70280011807)Hebei Province High-Level Talent Funding Project(Grant No.B20231003)Strategic Leading Science and Technology Special Project of Chinese Academy of Sciences(Grant No.XDB44000000-7)Interdisciplinary Research Program of Natural Science of Hebei University(Grant No.DXK202101)Institute of Life Sciences and Green Development(Grant No.521100311)Outstanding Young Scientific Research and Innovation Team of Hebei University(Grant No.605020521001)Advanced Talents Incubation Program of Hebei University(Grant Nos.521000981426,521100221071,521100224232,521000981363)Science and Technology Project of Hebei Education Department(Grant Nos.QN2020178,QN2021026)Baoding Science and Technology Plan Project(Grant No.2172P011)Hebei Province Key R&D Plan Projects(Grant No.22311101D)Baoding Science and Technology Plan Project(Grant No.2272P014)Regional Innovation and Development Joint Fund Key Project(Grant No.U23A20365)Hebei Province Natural Science Foundation(Grant No.F2023201044).
文摘Optical synapses have an ability to perceive and remember visual information,making them expected to provide more intelligent and efficient visual solutions for humans.As a new type of artificial visual sensory devices,photoelectric memristors can fully simulate synaptic performance and have great prospects in the development of biological vision.However,due to the urgent problems of nonlinear conductance and high-energy consumption,its further application in high-precision control scenarios and integration is hindered.In this work,we report an optoelectronic memristor with a structure of TiN/CeO_(2)/ZnO/ITO/Mica,which can achieve minimal energy consumption(187 pJ)at a single pulse(0.5 V,5 ms).Under the stimulation of continuous pulses,linearity can be achieved up to 99.6%.In addition,the device has a variety of synaptic functions under the combined action of photoelectric,which can be used for advanced vision.By utilizing its typical long-term memory characteristics,we achieved image recognition and long-term memory in a 3×3 synaptic array and further achieved female facial feature extraction behavior with an activation rate of over 92%.Moreover,we also use the linear response characteristic of the device to design and implement the night meeting behavior of autonomous vehicles based on the hardware platform.This work highlights the potential of photoelectric memristors for advancing neuromorphic vision systems,offering a new direction for bionic eyes and visual automation technology.