期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
Second-Life Battery Energy Storage System Capacity Planning and Power Dispatch via Model-Free Adaptive Control-Embedded Heuristic Optimization
1
作者 Chuan Yuan Chang Liu +5 位作者 Shijun Chen Weiting Xu Jing Gou Ke Xu Zhengbo Li Youbo Liu 《Energy Engineering》 2025年第9期3573-3593,共21页
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg... The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches. 展开更多
关键词 Second-life battery energy storage systems model-free adaptive voltage control bilevel optimization framework heterogeneous battery degradation model heuristic capacity configuration optimization
在线阅读 下载PDF
An Introduction to the Integrated Climate Model of the Center for Monsoon System Research and Its Simulated Influence of El Ni?no on East Asian–Western North Pacific Climate 被引量:5
2
作者 HUANG Ping WANG Pengfei +4 位作者 HU Kaiming HUANG Gang ZHANG Zhihua LIU Yong YAN Bangliang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第5期1136-1146,共11页
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Res... This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate. 展开更多
关键词 Integrated Climate Model (ICM) global climate model E1 Nifio East Asian climate
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
3
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking:A Tool for Exploring the Impact of Changing Climate on Mid-to-High Latitude Weather Extremes 被引量:1
4
作者 Dehai LUO Wenqi ZHANG Binhe LUO 《Advances in Atmospheric Sciences》 2025年第10期2018-2035,共18页
A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and... A nonlinear multi-scale interaction(NMI)model was proposed and developed by the first author for nearly 30 years to represent the evolution of atmospheric blocking.In this review paper,we first review the creation and development of the NMI model and then emphasize that the NMI model represents a new tool for identifying the basic physics of how climate change influences mid-to-high latitude weather extremes.The building of the NMI model took place over three main periods.In the 1990s,a nonlinear Schr?dinger(NLS)equation model was presented to describe atmospheric blocking as a wave packet;however,it could not depict the lifetime(10-20 days)of atmospheric blocking.In the 2000s,we proposed an NMI model of atmospheric blocking in a uniform basic flow by making a scale-separation assumption and deriving an eddyforced NLS equation.This model succeeded in describing the life cycle of atmospheric blocking.In the 2020s,the NMI model was extended to include the impact of a changing climate mainly by altering the basic zonal winds and the magnitude of the meridional background potential vorticity gradient(PVy).Model results show that when PVy is smaller,blocking has a weaker dispersion and a stronger nonlinearity,so blocking can be more persistent and have a larger zonal scale and weaker eastward movement,thus favoring stronger weather extremes.However,when PVy is much smaller and below a critical threshold under much stronger winter Arctic warming of global warming,atmospheric blocking becomes locally less persistent and shows a much stronger westward movement,which acts to inhibit local cold extremes.Such a case does not happen in summer under global warming because PVy fails to fall below the critical threshold.Thus,our theory indicates that global warming can render summer-blocking anticyclones and mid-to-high latitude heatwaves more persistent,intense,and widespread. 展开更多
关键词 nonlinear Schrödinger equation nonlinear multi-scale interaction model of atmospheric blocking meridional background potential vorticity gradient climate change mid-to-high latitude weather extremes
在线阅读 下载PDF
Asynchronously fault detection for flight vehicles with unstable modes via MDLF and MDADT method
5
作者 Sheng Luo Xin Liu +2 位作者 Yanfei Cheng Shiyu Shuai Haoyu Cheng 《Defence Technology(防务技术)》 2025年第7期417-436,共20页
This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(F... This research focuses on detecting faults in flight vehicles with unstable subsystems operating asynchronously.By accounting for asynchronous switching,a switched model is established,and filters for fault detection(FD)in unstable subsystems are developed.The FD challenge is then transformed into an H∞filtering issue.Utilizing the multiple discontinuous Lyapunov function(MDLF)approach and the mode-dependent average dwell time(MDADT)method,sufficient conditions are derived to ensure stability during both fast and slow switching.Furthermore,the existence and solutions for FD filters are provided through linear matrix inequalities(LMIs).The simulation outcomes demonstrated the excellent performance of the developed method in studied cases. 展开更多
关键词 Fault detection Asynchronous switching H∞filtering Multiple discontinuous lyapunov function Mode-dependent average dwell time Linear matrix inequalities(LMIs)
在线阅读 下载PDF
Factor graph method for target state estimation in bearing-only sensor network
6
作者 CHEN Zhan FANG Yangwang +1 位作者 ZHANG Ruitao FU Wenxing 《Journal of Systems Engineering and Electronics》 2025年第2期380-396,共17页
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.... For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method. 展开更多
关键词 factor graph cubature information filtering bearing-only sensor network state estimation
在线阅读 下载PDF
Design,Analysis and Prototype Testing of a Non-explosive Self-deploying Wing Actuated by NiTi Shape Memory Alloy Wires
7
作者 Bin Huang Jun Wang +2 位作者 Xiaojun Gu Jihong Zhu Weihong Zhang 《Chinese Journal of Mechanical Engineering》 2025年第3期229-242,共14页
This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape me... This paper introduces an innovative approach to the deployment of folding wings on cruise missiles,aiming to overcome the issues associated with explosive devices.The proposed solution involves employing NiTi shape memory wires for a nonexplosive self-deploying wing mechanism.The fundamental concept of the design revolves around the utilization of NiTi wires,which contract upon electric heating.This contraction action severs the shear pin,consequently releasing the folded wings.The operational performance of the NiTi wire is thoroughly examined through a series of electro-thermo-mechanical tests,offering valuable insights for selecting the appropriate wire material.Moreover,the mechanical dynamics involved in the self-deploying process are elucidated through finite element simulations.The simulations highlight that the thermally-induced phase transformation within the NiTi wires generates substantial actuation forces,exceeding 700 N,and strokes of over 6 mm.These forces are deemed sufficient for breaking the aluminum shear pin and effecting wing deployment.The proposed mechanism’s practical viability is substantiated through prototype tests,which conclusively establish the superiority of the nonexplosive self-deploying wing mechanism when compared to conventional methods.The experimental outcomes underscore the mechanism’s capability to markedly reduce overload stress while remaining compliant with the designated requirements and constraints. 展开更多
关键词 Folding wing Shape memory alloy Cruise missile Explosion overload ACTUATION
在线阅读 下载PDF
Group cooperative midcourse guidance law design considering time-to-go
8
作者 ZHANG Ruitao FANG Yangwang +2 位作者 CHEN Zhan GUO Hang FU Wenxing 《Journal of Systems Engineering and Electronics》 2025年第3期835-853,共19页
To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.... To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL. 展开更多
关键词 cooperative midcourse guidance virtual collision point TIME-TO-GO finite-time theory group consensus protocol
在线阅读 下载PDF
Stability-enhanced viscous vortex particle method in high Reynolds number flow and shear turbulence
9
作者 Xiaoxuan MENG Junqiang BAI +2 位作者 Ziyi XU Min CHANG Zhe HUI 《Chinese Journal of Aeronautics》 2025年第7期69-83,共15页
The Vortex Particle Method(VPM)is a meshless Lagrangian vortex method.Its low numerical dissipation is exceptionally suitable for wake simulation.Nevertheless,the inadequate numerical stability of VPM prevents its wid... The Vortex Particle Method(VPM)is a meshless Lagrangian vortex method.Its low numerical dissipation is exceptionally suitable for wake simulation.Nevertheless,the inadequate numerical stability of VPM prevents its widespread application in high Reynolds number flow and shear turbulence.To better simulate these flows,this paper proposes the stability-enhanced VPM based on a Reformulated VPM(RVPM)constrained by conservation of angular momentum,integrating a relaxation scheme to suppress the divergence of the vorticity field,and further coupling the Sub-Grid Scale(SGS)model to account for the turbulence dissipation caused by vortex advection and vortex stretching.The validity of the RVPM is confirmed by simulating an isolated vortex ring's evolution.The results also demonstrate that the relaxation scheme of vorticity enhances the numerical stability of the VPM by mitigating the divergence of the vorticity field.The leapfrogging vortex rings simulation demonstrates that the RVPM with the present SGS model can more precisely feature the leapfrog and fusion of vortex rings and has improved numerical stability in high Reynolds number flows.The round turbulent jet simulation confirms that the stability-enhanced VPM can stably simulate shear turbulence and accurately resolve fluctuating components and Reynolds stresses in the turbulence. 展开更多
关键词 Wake simulation Vortex particle method Numerical stability Sub-grid scale model Turbulence dissipation
原文传递
Impulsive Consensus of MASs With Input Saturation and DoS Attacks
10
作者 Xuyang Wang Dengxiu Yu Xiaodi Li 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期414-424,共11页
This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems(MASs) with input saturation. According to the coupling of input saturation and denial of service(DoS) attacks, imp... This paper investigates the secure impulsive consensus of Lipschitz-type nonlinear multi-agent systems(MASs) with input saturation. According to the coupling of input saturation and denial of service(DoS) attacks, impulsive control for MASs becomes extremely challenging. Considering general DoS attacks,this paper provides the sufficient conditions for the almost sure consensus of the MASs with input saturation, where the error system can achieve almost sure local exponential stability.Through linear matrix inequalities(LMIs), the relation between the trajectory boundary and DoS attacks is characterized, and the trajectory boundary is estimated. Furthermore, an optimization method of the domain of attraction is proposed to maximize the size. And a non-conservative and practical boundary is proposed to characterize the effect of DoS attacks on MASs. Finally, considering a multi-agent system with typical Chua's circuit dynamic model, an example is provided to illustrate the theorems' correctness. 展开更多
关键词 Almost sure consensus denial of service(DoS)attacks impulsive control input saturation
在线阅读 下载PDF
Deterministic Convergence Analysis for GRU Networks via Smoothing Regularization
11
作者 Qian Zhu Qian Kang +2 位作者 Tao Xu Dengxiu Yu Zhen Wang 《Computers, Materials & Continua》 2025年第5期1855-1879,共25页
In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/... In this study,we present a deterministic convergence analysis of Gated Recurrent Unit(GRU)networks enhanced by a smoothing L_(1)regularization technique.While GRU architectures effectively mitigate gradient vanishing/exploding issues in sequential modeling,they remain prone to overfitting,particularly under noisy or limited training data.Traditional L_(1)regularization,despite enforcing sparsity and accelerating optimization,introduces non-differentiable points in the error function,leading to oscillations during training.To address this,we propose a novel smoothing L_(1)regularization framework that replaces the non-differentiable absolute function with a quadratic approximation,ensuring gradient continuity and stabilizing the optimization landscape.Theoretically,we rigorously establish threekey properties of the resulting smoothing L_(1)-regularizedGRU(SL_(1)-GRU)model:(1)monotonic decrease of the error function across iterations,(2)weak convergence characterized by vanishing gradients as iterations approach infinity,and(3)strong convergence of network weights to fixed points under finite conditions.Comprehensive experiments on benchmark datasets-spanning function approximation,classification(KDD Cup 1999 Data,MNIST),and regression tasks(Boston Housing,Energy Efficiency)-demonstrate SL_(1)-GRUs superiority over baseline models(RNN,LSTM,GRU,L_(1)-GRU,L2-GRU).Empirical results reveal that SL_(1)-GRU achieves 1.0%-2.4%higher test accuracy in classification,7.8%-15.4%lower mean squared error in regression compared to unregularized GRU,while reducing training time by 8.7%-20.1%.These outcomes validate the method’s efficacy in balancing computational efficiency and generalization capability,and they strongly corroborate the theoretical calculations.The proposed framework not only resolves the non-differentiability challenge of L_(1)regularization but also provides a theoretical foundation for convergence guarantees in recurrent neural network training. 展开更多
关键词 Gated recurrent unit REGULARIZATION convergence
在线阅读 下载PDF
Vertical Structure and Energy Transfer of Stationary Planetary Waves in Different Prescribed Atmospheric Stratifications
12
作者 Wenqi ZHANG Lin WANG 《Advances in Atmospheric Sciences》 2026年第1期233-246,共14页
This study investigates the relationship between atmospheric stratification (i.e., static stability given by N^(2)) and the vertical energy transfer of stationary planetary waves, and further illustrates the underlyin... This study investigates the relationship between atmospheric stratification (i.e., static stability given by N^(2)) and the vertical energy transfer of stationary planetary waves, and further illustrates the underlying physical mechanism. Specifically, for the simplified case of constant stratospheric N^(2), the refractive index square of planetary waves has a theoretical tendency to increase first and then decrease with an increased N^(2), whereas the group velocity weakens. Mechanistically, this behavior can be understood as an intensified suppression of vertical isentropic surface displacement caused by meridional heat transport of planetary waves under strong N^(2) conditions. Observational analysis corroborates this finding, demonstrating a reduction in the vertical-propagation velocity of waves with increased N^(2). A linear, quasi- geostrophic, mid-latitude beta-plane model with a constant background westerly wind and a prescribed N^(2) applicable to the stratosphere is used to obtain analytic solutions. In this model, the planetary waves are initiated by steady energy influx from the lower boundary. The analysis indicates that under strong N^(2) conditions, the amplitude of planetary waves can be sufficiently increased by the effective energy convergence due to the slowing vertical energy transfer, resulting in a streamfunction response in this model that contains more energy. For N^(2) with a quasi-linear vertical variation, the results bear a resemblance to the constant case, except that the wave amplitude and oscillating frequency show some vertical variations. 展开更多
关键词 planetary waves vertical propagation atmospheric stratification stratospheric circulation group velocity
在线阅读 下载PDF
Strength-based concurrent design for structural topology and building orientation of additively manufactured lattice structure
13
作者 Chenyang LI Yamin LI +3 位作者 Shangqin YUAN Shaoying LI Jihong ZHU Weihong ZHANG 《Chinese Journal of Aeronautics》 2025年第9期540-558,共19页
A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and ... A novel Additive Manufacturing(AM)-driven concurrent design strategy based on the beam characterization model considering strength constraints is proposed.The lattice topology,radius size,Building Orientation(BO),and structural yield strength can be simultaneously adjusted by integrating the overall process-structure-performance relationship of the AM process into the optimization.Specifically,the transverse isotropic material model is adopted to describe the material properties induced by the layer-by-layer manner of additive manufacturing.To bolster lattice strength performance,the stress constraints and ratio constraints of lattice struts are employed.The Tsai-Wu yield criterion is implemented to characterize the lattice strut's strength,while the P-norm method streamlines the handling of multiple constraints,minimizing computational overhead.Moreover,the gradient-based optimization model is established,where both the individual struts diameters and BO can be designed,and the buckling-prone spatial struts are strategically eliminated to improve the lattice strength further.Furthermore,several typical structures are optimized to verify the effectiveness of the proposed method.The optimized results are quite encouraging since the heterogeneous lattice structures with optimized BO obtained by the strength-based concurrent method show a remarkably improved performance compared to traditional designs. 展开更多
关键词 Strength-based design AM-driven design Concurrent design Building orientation Additive manufacturing
原文传递
Spacecraft intelligent orbital game technology:A review
14
作者 Xuyang CAO Xin NING +7 位作者 Suyi LIU Xiaobin LIAN Hongyan WANG Gaopeng ZHANG Feng CHEN Jiye ZHANG Bingzan LIU Zhansheng CHEN 《Chinese Journal of Aeronautics》 2025年第6期6-25,共20页
In recent years,the availability of space orbital resources has been declining,and the increasing frequency of spacecraft close approach events has heightened the urgency for enhanced space security measures.This pape... In recent years,the availability of space orbital resources has been declining,and the increasing frequency of spacecraft close approach events has heightened the urgency for enhanced space security measures.This paper establishes a comprehensive framework for intelligent orbital game technology in space,encompassing four core technologies:threat perception of noncooperative targets,intent recognition,situation assessment,and intelligent orbital game countermeasures.The concepts of multi-turn,multi-round and multi-match in space orbital games are defined,clarifying the core technological requirements for intelligent space orbital games and establishing a cohesive technological framework.Subsequently,the current status of research on these four core technologies is investigated.The challenges faced in the existing research are analyzed,and potential solutions for future studies are proposed.This paper aims to provide readers with a thorough understanding of the latest advancements in space intelligent orbital game technology.along with insights into the future directions and challenges in this field. 展开更多
关键词 Intelligent orbital game Threat perception Situation assessment Intent recognition Game confrontation
原文传递
Data-Driven Parametric Design of Additively Manufactured Hybrid Lattice Structure for Stiffness and Wide-Band Damping Performance
15
作者 Chenyang Li Shangqin Yuan +3 位作者 Han Zhang Shaoying Li Xinyue Li Jihong Zhu 《Additive Manufacturing Frontiers》 2025年第2期30-39,共10页
The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies m... The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable. 展开更多
关键词 Hybrid lattice structure DATA-DRIVEN Wide-band damping Machine-learning method
在线阅读 下载PDF
Fluctuations in the relationship between the Silk Road Pattern and the summer North Atlantic Oscillation
16
作者 Yong Liu Zhencai Du 《Atmospheric and Oceanic Science Letters》 2025年第4期35-40,共6页
This study investigated the fluctuations in the relationship between the Silk Road Pattern(SRP)and the boreal summer North Atlantic Oscillation(SNAO).The results indicated that the SRP–SNAO relationship was relativel... This study investigated the fluctuations in the relationship between the Silk Road Pattern(SRP)and the boreal summer North Atlantic Oscillation(SNAO).The results indicated that the SRP–SNAO relationship was relatively weak during 1958–2022,which was primarily due to fluctuations,particularly the reversal in their relationship since the late 1990s.Using wavelet coherence analysis,the authors identified a strong SRP–SNAO linkage on a 4–8-yr timescale,in particular during the mid-1970s to the early/mid-1990s.This strong linkage is mainly attributable to the intensification and eastward movement of the southern part of the SNAO around the mid/late 1970s,which favored the strong connection between the SNAO and the SRP.Additionally,the interdecadal changes of the atmospheric circulations over the North Atlantic and Eurasia around the mid/late 1970s that resembled the circulation anomalies related to the strong SRP–SNAO linkage,may also have provided a favorable background for the strong connection between the two teleconnections.These findings on the fluctuations in the SRP–SNAO linkage may offer important implications for understanding the impact of the SNAO on the SRP and the variability of the SRP. 展开更多
关键词 Silk Road Pattern North Atlantic Oscillation Relationship fluctuation
在线阅读 下载PDF
Uncertainty of the Future Changes in Interannual Precipitation Variability under Global Warming Based on Single-Model Initial-Condition Large Ensembles and CMIP6
17
作者 Jiayu ZHANG Ping HUANG 《Advances in Atmospheric Sciences》 2025年第11期2279-2289,共11页
The change in interannual precipitation variability(P_(IAV)),especially the part driven by El Niño–Southern Oscillation over the Pacific,has sparked worldwide concern.However,it is plagued by substantial uncerta... The change in interannual precipitation variability(P_(IAV)),especially the part driven by El Niño–Southern Oscillation over the Pacific,has sparked worldwide concern.However,it is plagued by substantial uncertainty,such as model uncertainty,internal variability,and scenario uncertainty.Single-model initial-condition large ensembles(SMILEs)and a polynomial fitting method were suggested to separate these uncertainty sources.However,the applicability of a widely used polynomial fitting method in the uncertainty separation of P_(IAV)projection remains unknown.This study compares three sources of uncertainty estimated from five SMILEs and 28 models with one ensemble member in phase 6 of the Coupled Model Intercomparison Project(CMIP6).Results show that the internal uncertainty based on models with one ensemble member calculated using the polynomial fitting method is significantly underestimated compared to SMILEs.However,internal variability in CMIP6 as represented in the pre-industrial control run,aligns closely with SMILEs.At 1.5°C warming above the preindustrial level,internal variability dominates globally,masking the externally forced P_(IAV)signal.At 2.0°C warming,both internal and model uncertainties are significant over regions like Central Africa,the equatorial Indian Ocean,the Maritime Continent,and the Arctic,while internal variability still dominates elsewhere.In some regions,the forced signal becomes distinguishable from internal variability.This study reveals the limitations of the polynomial fitting method in separating P_(IAV)projection uncertainties and emphasizes the importance of SMILEs for accurately quantifying uncertainty sources.It also suggests that improving the intermodel agreement at warming levels of 1.5°C and 2.0°C will not substantially reduce uncertainty in most regions. 展开更多
关键词 uncertainty separation interannual precipitation variability polynomial fitting global warming single-model initial-condition large ensembles CMIP6
在线阅读 下载PDF
Evaluation of surface wind speed over East Asia and the adjacent ocean in three reanalyses using satellite and in-situ observations
18
作者 Siyuan Li Kai Wang +7 位作者 Hao Miao Xuedan Zhu Yanjie Liu Jinxiao Li Wei Wang Xiao Zheng Juan Feng Xiaocong Wang 《Atmospheric and Oceanic Science Letters》 2025年第5期22-27,共6页
Surface wind speed(SWS)not only plays a crucial role in regulating the Earth's energy and hydrological cycle,but also is an important source of sustainable renewable energy.This study assesses the credibility of s... Surface wind speed(SWS)not only plays a crucial role in regulating the Earth's energy and hydrological cycle,but also is an important source of sustainable renewable energy.This study assesses the credibility of sws in three reanalyses(ERA5,MERRA2,and JRA-55)in East Asia using both satellite and in-situ observations.Results show all three reanalyses can capture the spatial pattern of swS as in observations,yet there are notable differences in magnitude.On land,ERA5 and MERRA2 overestimate the SWS by about 0.6 and 1.5 m s^(-1),respectively,whereas JRA-55 underestimates it.The biases over the oceans are opposite to those on land and are relatively small due to the assimilation of observations of oceanic surface winds.Overall,JRA-55 and ERA5 offer better estimates of seasonal means and variances of SWS than MERRA2.The observed SWS shows a negative trend of-0.08 m s^(-1)/10 yr on land and a positive trend of 0.09 m s^(-1)/10 yr in the western North Pacific.Only JRA-55 shows similar trends to observations over both land and ocean,while ERA5 and MERRA2 show varying degrees of deviation from the observations.Further investigation shows that there is a strong link between the trend of SWS and that of the large-scale circulation,and that a large part of the SwS trend can be attributed to changes in large-scale circulations. 展开更多
关键词 Surface wind speed ASCAT REANALYSIS Trend analysis East Asia
在线阅读 下载PDF
Reduced rainfall over the Amazon basin in an idealized CO_(2) removal scenario:Remote dynamic processes
19
作者 Suqin Zhang Xia Qu +1 位作者 Gang Huang Peng Hu 《Journal of Environmental Sciences》 2025年第9期525-537,共13页
The Amazon basin plays a crucial role in biodiversity and carbon storage,but its local rainfall is anticipated to decrease under globalwarming.Carbon dioxide removal(CDR)is being considered as a method to mitigate the... The Amazon basin plays a crucial role in biodiversity and carbon storage,but its local rainfall is anticipated to decrease under globalwarming.Carbon dioxide removal(CDR)is being considered as a method to mitigate the impact of global warming.However,the specific effects of CDR on Amazon rainfall have not been well understood.Here,an idealized CDR experiment reveals that the reduced rainfall over the Amazon basin does not recover.Significantly weaker rainfall is found during the ramp-down period compared to the ramp-up period at the same CO_(2)concentration.This response is associated with the enhanced El Niño-like warming in the tropical Pacific Ocean during the CDR period.This warming pattern has dual effects:weakening the zonal circulation and causing anomalous descent directly over the Amazon basin,while also triggering a stationary Rossby wave train that propagated downstream and generated anomalous ascent over the Sargasso Sea.This anomalous ascent induces anomalous descent and weakens moisture transport over the Amazon basin by the local meridional circulation.Consequently,precipitation is reduced over the Amazon basin in response to the weakened zonal and meridional circulation.Our findings indicate that even if the atmospheric CO_(2)concentration is lowered,the Amazon basin will remain susceptible to drought.Effective local climate adaptation strategies are urgently needed to address the vulnerability of this critical ecosystem. 展开更多
关键词 CO_(2)removal Amazon basin rainfall El Niño-like warming Stationary Rossby wave train
原文传递
Causes of Differences in the Tropical Pacific SST Warming Pattern Projected by CMIP6 Models
20
作者 Jun YING Matthew COLLINS +4 位作者 Robin CHADWICK Shangfeng CHEN Xiaoming HU Tao LIAN Shangmin LONG 《Advances in Atmospheric Sciences》 2025年第6期1077-1091,共15页
The inter-model difference in the tropical Pacific SST warming pattern is a big stumbling block for reliable projections of global climate change. Here by conducting an inter-model Empirical Orthogonal Function(EOF) a... The inter-model difference in the tropical Pacific SST warming pattern is a big stumbling block for reliable projections of global climate change. Here by conducting an inter-model Empirical Orthogonal Function(EOF) analysis as well as an ocean mixed-layer heat budget, we find that the first two modes of inter-model difference in the SST warming pattern projected by 30 CMIP6 models, explaining more than three-quarters of the total inter-model variance, are both tied to different cloud–radiation feedbacks. The EOF1 mode that captures the different magnitudes of El Ni?o-like warming as well as the largest inter-model variance in the far eastern equatorial Pacific, is likely driven by highly diverse cloud–radiation feedbacks in the east and, to a lesser extent, by differing changes in the oceanic vertical temperature gradient. The EOF2 mode that mainly represents the different magnitudes of SST warming in the western equatorial Pacific, is associated with differing levels of negative cloud–radiation feedback over the central equatorial Pacific through a dynamic air–sea coupled process involving both the Bjerknes feedback and the wind–evaporation–SST feedback.Considering in isolation the robust common model bias of a weak negative cloud–radiation feedback over the central equatorial Pacific, the projected SST warming in the western equatorial Pacific is likely to be smaller than the multi-model ensemble mean, thereby presenting a more weakeened zonal SST gradient than expected, implying the potential for more severe climate extremes under global warming. 展开更多
关键词 SST warming pattern inter-model difference cloud–radiation feedback
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部