Leptospirosis is a potential threat to public health. An increasing number of people infected with Leptospira were reported in Bantul District, Yogyakarta special region with a case fatality rate (CFR) of 7.8%. Infect...Leptospirosis is a potential threat to public health. An increasing number of people infected with Leptospira were reported in Bantul District, Yogyakarta special region with a case fatality rate (CFR) of 7.8%. Infected areas in the district have increased from 2 to 15 sub districts. Leptospirosis is caused by Leptospira bacteria and spread by direct contact with infected rodents and indirect contact through contaminated water or soil. Leptospira in rats, water and soil were detected using real-time quantitative polymerase chain reaction (qPCR). The sites of sampled materials were geocoded using Global Positioning System (GPS). Spatial analysis was used to predict the spread of Spira. This study aims to perform the mapping, clustering, and predicting the spread of Leptospira in Bantul Yogyakarta Indonesia. Data were collected from three sub-districts: Sedayu, Sewon and Bantul. The result showed that 38.04% from 368 samples were Spira positive. There were four significant clusters of infection spread source. Spira is predicted to spread in, and out from, Bantul District.展开更多
Pyrolysis is one of the thermal cracking methods to convert hydrocarbon to liquid fuel.The quantity and quality of the process are dependent on several condition including temperature,reaction time,catalyst,and the ty...Pyrolysis is one of the thermal cracking methods to convert hydrocarbon to liquid fuel.The quantity and quality of the process are dependent on several condition including temperature,reaction time,catalyst,and the type of reactor.Meanwhile,a gasoline fraction was maximum product to be considered in the pyrolisis process.Therefore,this study aims to increase the gasoline fraction in liquid fuel using stepwise pyrolysis with a long bed catalytic reactor downstream(LBCR).The LBCR downstream was equipped with the top and bottom outlet and the fed source was mixed municipal solid waste(MMSW).The activated natural dolomite at 500℃ was used to allow the repetition of the secondary cracking.Also,the reactor temperature was setup at around 200℃-300℃ and the pyrolizer was 400℃.To analyze the gasoline fraction and physical properties of liquid fuel,Gas Chromatography-Mass Spectroscopy(GC-MS)and ASTM standard were employed.The experimental results showed there was a significant increase in the gasoline fraction of liquid fuels compared to using direct catalytic cracking and absence of catalysts.By using a LBCR at 250℃,the liquid fuel obtained at top outlet(TO)and bottom outlet(BO)have 84.08 and 56.94 percent peak area of gasoline fraction(C5-C12),respectively.The average value(TO and BO)of the fraction at 250℃ by LBCR was 70.51 percent peak area and it was increased by about 93.6%and 51.14%compared to without catalyst and direct catalytic,respectively.Furthermore,pyrolytic liquid oils were found to have kinematic viscosity of 2.979 and 0.789 cSt,density of 0.781 and 0.782 g/cm^(3),and flash point<−5℃ for BO-250 and TO-250 liquid fuel,respectively.These results showed BO liquid fuel was comparable to diesel conventional fuel while TO liquid fuel was comparable to gasoline.Evidently,the presence of LBCR made a major contribution to generate multi secondary cracking and to produce more gasoline fraction from mixed MMSW feedstock,as well as to increase the physical properties of liquid fuel.展开更多
文摘Leptospirosis is a potential threat to public health. An increasing number of people infected with Leptospira were reported in Bantul District, Yogyakarta special region with a case fatality rate (CFR) of 7.8%. Infected areas in the district have increased from 2 to 15 sub districts. Leptospirosis is caused by Leptospira bacteria and spread by direct contact with infected rodents and indirect contact through contaminated water or soil. Leptospira in rats, water and soil were detected using real-time quantitative polymerase chain reaction (qPCR). The sites of sampled materials were geocoded using Global Positioning System (GPS). Spatial analysis was used to predict the spread of Spira. This study aims to perform the mapping, clustering, and predicting the spread of Leptospira in Bantul Yogyakarta Indonesia. Data were collected from three sub-districts: Sedayu, Sewon and Bantul. The result showed that 38.04% from 368 samples were Spira positive. There were four significant clusters of infection spread source. Spira is predicted to spread in, and out from, Bantul District.
文摘Pyrolysis is one of the thermal cracking methods to convert hydrocarbon to liquid fuel.The quantity and quality of the process are dependent on several condition including temperature,reaction time,catalyst,and the type of reactor.Meanwhile,a gasoline fraction was maximum product to be considered in the pyrolisis process.Therefore,this study aims to increase the gasoline fraction in liquid fuel using stepwise pyrolysis with a long bed catalytic reactor downstream(LBCR).The LBCR downstream was equipped with the top and bottom outlet and the fed source was mixed municipal solid waste(MMSW).The activated natural dolomite at 500℃ was used to allow the repetition of the secondary cracking.Also,the reactor temperature was setup at around 200℃-300℃ and the pyrolizer was 400℃.To analyze the gasoline fraction and physical properties of liquid fuel,Gas Chromatography-Mass Spectroscopy(GC-MS)and ASTM standard were employed.The experimental results showed there was a significant increase in the gasoline fraction of liquid fuels compared to using direct catalytic cracking and absence of catalysts.By using a LBCR at 250℃,the liquid fuel obtained at top outlet(TO)and bottom outlet(BO)have 84.08 and 56.94 percent peak area of gasoline fraction(C5-C12),respectively.The average value(TO and BO)of the fraction at 250℃ by LBCR was 70.51 percent peak area and it was increased by about 93.6%and 51.14%compared to without catalyst and direct catalytic,respectively.Furthermore,pyrolytic liquid oils were found to have kinematic viscosity of 2.979 and 0.789 cSt,density of 0.781 and 0.782 g/cm^(3),and flash point<−5℃ for BO-250 and TO-250 liquid fuel,respectively.These results showed BO liquid fuel was comparable to diesel conventional fuel while TO liquid fuel was comparable to gasoline.Evidently,the presence of LBCR made a major contribution to generate multi secondary cracking and to produce more gasoline fraction from mixed MMSW feedstock,as well as to increase the physical properties of liquid fuel.