期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Experimental research on overlying strata movement and fracture evolution in pillarless stress-relief mining 被引量:24
1
作者 Junhua Xue Hanpeng Wang +3 位作者 Wei Zhou Bo Ren Changrui Duan Dongsheng Deng 《International Journal of Coal Science & Technology》 EI 2015年第1期38-45,共8页
In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the ... In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the risk of high gas emission and outbursts of coal and gas. A key to success with this mining sequence is to gain a detailed understanding of the movement and fracture evolution of the overlying and underlying strata after the protective seam in extracted. In Zhuji mine, the No. 11-2 seam is extracted as a protective seam with the pillarless mining method by retaining goal-side roadways prior to its overlying No. 13-1 seam. An investigation has been undertaken in the panel 1111 (1) of Zhuji mine to physically simulate the movement and fracture evolution of the overlying strata alter the No. 1 I-2 seam is extracted. In the physical simulation, the displacement, strain, and deformation and failure process of the model for simulation were acquired with various means such as grating displacement meter, strain gauges, and digital photography. The simulation result shows that: (1) Initial caving interval of the immediate roof was 21.6 m, the first weighting interval was 23.5-37.3 m with the average interval of 33.5 m, and the periodic weighting interval of the main roof was in a range of 8.2-20.55 m and averaged at 15.2 m. (2) The maximum height of the caving zone after the extraction of No. 11-2 seam was 8.0 m, which was 4 times of the seam mining height and the internal strata of the caving zone collapsed irregularly. The mining-induced fractures developed 8-30 m above the mined No. 11-2 seam, which was 7.525 times of the seam mining height, the fracture zone was about 65° upward from the seam open-off cut toward the goaf, the height of longitudinal joint growth was 4-20 times of the mining seam height, and the height of lateral joint growth was 20-25 times of the mining seam height. (3) The "arch-in-arch" mechanical structure of the internal goaf was bounded by an expansion angle of broken strata in the lateral direction of the retained goaf-side roadway. The spatial and temporal evolution regularities of over- burden's displacement field and stress field, dynamic development process and distribution of fracture field were analyzed. Based on the simulation results, it is recommended that several goaf drainage methods, i.e. gas drainage with buried pipes in goaf, surface goaf gas drainage, and cross-measure boreholes, should be implemented to ensure the safe mining of the panel 1111 (1). 展开更多
关键词 Low-permeability coal seam Pillarless stress-relief mining Overburden movement Fracture evolution Physical simulation
在线阅读 下载PDF
Experimental research into the effect of gas pressure,particle size and nozzle area on initial gas-release energy during gas desorption 被引量:8
2
作者 Weitao Hou Hanpeng Wang +3 位作者 Liang Yuan Wei Wang Yang Xue Zhengwei Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期253-263,共11页
Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument... Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst. 展开更多
关键词 Coal and gas outburst Initial expansion energy of released gas Gas pressure Particle size Nozzle area
在线阅读 下载PDF
Research of deformation prediction method of soft soil deep foundation pit 被引量:8
3
作者 麻凤海 郑艳 杨帆 《Journal of Coal Science & Engineering(China)》 2008年第4期637-639,共3页
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio... In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects. 展开更多
关键词 soft soil deep foundation pit deformation prediction neural network grey theory time series analyses
在线阅读 下载PDF
Experimental Study on Performance of Multidirectional Geogrid and Its Application in Engineering of High Slope 被引量:6
4
作者 王清标 WEN Xiaokang +2 位作者 JIANG Jinquan ZHANG Cong SHI Zhenyue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期704-711,共8页
By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the ef... By analyzing the grille mechanical property, tensile strength and creep tests, and the fi eld tests, we investigated the characteristics and the reinforcement principle of multidirectional geogrid, and obtained the effect factors of grid characteristics, load and time curve and the shear stress of grille and sand interface. The reinforcement effect of geogrid in combination of typical project cases was illustrated and the following conclusions were presented. Firstly, multidirectional geogrid has ability to resist structural deformation, node distortion or soil slippage under stress, and can effectively disperse load. Secondly, with the increase of tensile rate, grille intensity increases and the creep value also increases with the increase of load. Thirdly, the frictional resistance balance between horizontal thrust of damaged zone and reinforced soil in stable region can avoid slope failure due to excessive lateral deformation. Fourthly, the multidirectional geogrid is able to withstand the vertical, horizontal and diagonal forces by combing them well with three-dimensional orientation, realizing the purpose of preventing soil erosion and slope reinforcement, which has a wide range of application and development in engineering fi eld. 展开更多
关键词 multidirectional geogrid creep characteristics interfacial friction high slope reinforced soil
原文传递
Permeability evolution of the rock-concrete interface in underground high-pressure gas storage
5
作者 Meng Wang Bing Chen +5 位作者 Jiwei Xu Yu'an Gong Xinyi Gao Xuekai Li Mengtian Li Rentai Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4539-4558,共20页
The structural integrity of the interface between a concrete plug and the surrounding rock may be compromised during frequent cycles of air charging,discharging,and storage,which is typical of compressed air energy st... The structural integrity of the interface between a concrete plug and the surrounding rock may be compromised during frequent cycles of air charging,discharging,and storage,which is typical of compressed air energy storage systems in abandoned mines.To investigate this,nitrogen permeability tests were conducted on the interface samples of rockeconcrete interface in both consolidated and unconsolidated states under cyclic loading.The variations in the flow rate throughout the permeability process under different cycle numbers and load range conditions were investigated.The microscopic analysis at the interfaces was imaged using computed tomography scanning.The results indicated that the gas permeability of the cemented interfaces with different roughness values varied with confining pressure ranging from 10^(-13) m^(2) to 10^(-12) m^(2),whereas that of the non-cemented interfaces ranged from 10^(-12) m^(2) to 10^(-11) m^(2).A larger load variation range encompassed the permeability variation characteristics within a smaller variation range.The evolution pattern of the permeability ratio with the number of cycles was influenced by the inlet pressure.The greater the inlet pressure,the larger the increment ratio of the permeability.The permeability change patterns of interfaces with different roughness values were similar.Microscopic analysis revealed that pores inside the concrete were connected to the interface gaps.Under the coupling of stress and gas pressure,the gas could penetrate the crack tips or pores,accelerating the development of microcracks during the cyclic opening and closing of the pores.This study provides valuable insights into the safe long-term operation of underground high-pressure air storage. 展开更多
关键词 Compressed air energy storage(CAES) Rock-concrete interface Cyclic loading Gas permeability Microscopic analysis
在线阅读 下载PDF
Shear fracture behavior and fracture fractal characteristics of granite under adverse effect of cyclic heating
6
作者 JIANG Tian-qi CHEN Bing +5 位作者 ZHANG Qing-song SHEN Bao-tang BAI Ji-wen LIU Ren-tai CHEN Meng-jun SASAOKA Takashi 《Journal of Central South University》 2025年第9期3405-3426,共22页
Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors i... Deep geothermal extraction processes expose rock masses to frequent and significant temperature fluctuations. Developing a comprehensive understanding of the shear fracture mechanisms and crack propagation behaviors in rocks under the influence of cyclic heating is imperative for optimizing geothermal energy extraction. This study encompasses several critical aspects under cyclic heating conditions, including the assessment of stress distribution states, the characterization of two-dimensional fracture paths, the quantitative analysis of three-dimensional damage characteristics on fracture surfaces, and the determination of the fractal dimension of debris generated after the failure of granite. The test results demonstrate that cyclic heating has a pronounced adverse effect on the physical and mechanical properties of granite. Consequently, stress tends to develop and propagate in a direction perpendicular to the two-dimensional fracture path. This leads to an increase in the extent of tensile damage on the fracture surface and accelerates the overall rock failure process. This increases the number of small-sized debris, raises the fractal dimension, and enhances the rock’s rupture degree. In practical enhanced geothermal energy extraction, the real-time monitoring of fracture propagation within the reservoir rock mass is achieved through the analysis of rock debris generated during the staged fracturing process. 展开更多
关键词 progressive thermal damage stress distribution characteristics two-dimensional fracture path three-dimensional fracture surface failure characteristics fractal dimension
在线阅读 下载PDF
PM_(2.5)及其测量与影响研究简史 被引量:19
7
作者 CHOW Judith C 曹军骥 +2 位作者 李顺诚 王小亮 WATSON John G 《地球环境学报》 2012年第5期1019-1029,共11页
美国率先建立的国家环境空气质量标准(NAAQS)旨在保护公众健康,而该理念已被包括中国在内的众多国家所采用。针对大气悬浮颗粒物(PM),NAAQS根据PM在仪器检测以及人体吸入时的粒径选择性特征,定义了总悬浮颗粒(TSP)、PM_(10)、PM_(2.5)... 美国率先建立的国家环境空气质量标准(NAAQS)旨在保护公众健康,而该理念已被包括中国在内的众多国家所采用。针对大气悬浮颗粒物(PM),NAAQS根据PM在仪器检测以及人体吸入时的粒径选择性特征,定义了总悬浮颗粒(TSP)、PM_(10)、PM_(2.5)及其相应的质量浓度标准。这些指标的建立是基于长达300年来颗粒物监测技术发展及其危害评价的结果。因此2012年中国在颁布实施新PM_(2.5)空气质量标准时,PM_(2.5)的监测及评价方面有了更多科学积累与技术选择。本文简要回顾了PM的粒径分布、化学组成、可吸入特征、人体健康效应及空气质量标准等研究简史,根据其他国家的发展经验,提出中国在观测网络设计、测量仪器选择和使用、质量控制和质量保证及监测结果分析等方面需要确立自己独特的行业指南。对于未来空气质量的管理和标准制定,应同时考虑多种污染物及其对公众健康、能见度、气候、材料及生态系统的影响。 展开更多
关键词 PM2 .5 PM10 气溶胶采样 粒径选择切割头 复合污染物 国家环境空气质量标准
在线阅读 下载PDF
Predicting geological hazards during tunnel construction 被引量:28
8
作者 Shucai Li Shuchen Li Qingsong Zhang Yiguo Xue Bin Liu Maoxin Su Zhechao Wang Shugang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期232-242,共11页
The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective... The complicated geological conditions and geological hazards are challenging problems during tunnel construction,which will cause great losses of life and property.Therefore,reliable prediction of geological defective features,such as faults,karst caves and groundwater,has important practical significances and theoretical values.In this paper,we presented the criteria for detecting typical geological anomalies using the tunnel seismic prediction(TSP) method.The ground penetrating radar(GPR) signal response to water-bearing structures was used for theoretical derivations.And the 3D tomography of the transient electromagnetic method(TEM) was used to develop an equivalent conductance method.Based on the improvement of a single prediction technique,we developed a technical system for reliable prediction of geological defective features by analyzing the advantages and disadvantages of all prediction methods.The procedure of the application of this system was introduced in detail.For prediction,the selection of prediction methods is an important and challenging work.The analytic hierarchy process(AHP) was developed for prediction optimization.We applied the newly developed prediction system to several important projects in China,including Hurongxi highway,Jinping II hydropower station,and Kiaochow Bay subsea tunnel.The case studies show that the geological defective features can be successfully detected with good precision and efficiency,and the prediction system is proved to be an effective means to minimize the risks of geological hazards during tunnel construction. 展开更多
关键词 tunnel projects geological hazards comprehensive prediction tunnel seismic prediction(TSP) ground penetrating radar(GPR) transient electromagnetic method(TEM) analytic hierarchy process(AHP)
在线阅读 下载PDF
Effect of heterogeneity on mechanical and acoustic emission characteristics of rock specimen 被引量:9
9
作者 李术才 李国莹 《Journal of Central South University》 SCIE EI CAS 2010年第5期1119-1124,共6页
The influence of heterogeneity on mechanical and acoustic emission characteristics of rock specimen under uniaxial compress was studied with numerical simulation methods.Weibull distribution function was adopted to de... The influence of heterogeneity on mechanical and acoustic emission characteristics of rock specimen under uniaxial compress was studied with numerical simulation methods.Weibull distribution function was adopted to describe the mesoscopic heterogeneity of rocks.The failure process of heterogeneous rock specimen under uniaxial loading was simulated using FLAC 3D software.Five schemes were adopted to investigate the influence of heterogeneity.The results demonstrate that as the homogeneity increases,the peak strength and brittleness of rocks increase,and the macro elastic modulus improves as well.Heterogeneity has great influence on macro elastic modulus and strength when the homogeneity coefficient is less than 20.0.The volume expansion is not so obvious when the homogeneity increases.As the homogeneity coefficient increases the acoustic emissions modes change from swarm shock to main shock.When the homogeneity coefficient is high,the cumulative acoustic emission events-axial strain curve is gentle before the rock failure.The numerical results agree with the previously numerical results and earlier experimental measurements. 展开更多
关键词 HETEROGENEITY acoustic emission strain softening numerical simulation uniaxial compression elastic modulus
在线阅读 下载PDF
Upper bound solution for supporting pressure acting on shallow tunnel based on modified tangential technique 被引量:16
10
作者 杨小礼 杨子汉 +1 位作者 李永鑫 李术才 《Journal of Central South University》 SCIE EI CAS 2013年第12期3676-3682,共7页
Based on the nonlinear failure criterion and the upper bound theorem, the modified tangential technique method was proposed to derive the expression of supporting pressure acting on shallow tunnel. Instead of the same... Based on the nonlinear failure criterion and the upper bound theorem, the modified tangential technique method was proposed to derive the expression of supporting pressure acting on shallow tunnel. Instead of the same stress state, different normal stresses on element boundaries were used. In order to investigate the influence of different factors on supporting pressures, the failure mechanism was established. The solution of supporting pressure, with different parameters, was obtained by optimization theory. The corresponding failure mechanism and numerical results were presented. In comparison with the results using the single tangential technique method, it is found that the proposed method is effective, and the good agreement shows that the present solution of supporting pressure is reliable. 展开更多
关键词 shallow tunnel upper bound theorem nonlinear failure criterion modified tangential technique
在线阅读 下载PDF
Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China 被引量:9
11
作者 Xiaocheng Zhao Wenxiao Zhou +2 位作者 Dong Fu Bo Huang Mengchun Ge 《Journal of Earth Science》 SCIE CAS CSCD 2018年第2期280-294,共15页
Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplace... Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplaced during the Lower Carboniferous. The K-feldspar granites (332 Ma) have the typical A-type granite characteristics of a post-collision setting. The monzonitic granites have an emplacement age of 323 Ma. Zircon tHf values of the former range from +12.8 to +14.2, with an av- erage TDM2 of 453 Ma. The latter have lower zircon ~Hf values, ranging from +5.4 to +10.7, with an av- erage TDM2 of 798 Ma. The strong, positive ~nf values of the zircon indicate that both sets of samples are from a juvenile crust formed in an oceanic crust subduction stage, although the monzonitic granite may have undergone a hybridization of crustal materials. These results indicate a younger post orogenic event. The Paleo-Asian Ocean had closed before the Early Carboniferous and the Xilinhot area started its post-orogenic evolution with an extensional tectonic environment durin~ the Early Carboniferous. 展开更多
关键词 Lower Carboniferous granite Paleo-Asian Ocean Lu-Hf isotope XiUnhot Inner Mongolia.
原文传递
Risk assessment of floor water inrush in coal mines based on MFIM-TOPSIS variable weight model 被引量:9
12
作者 ZHANG Guan-da XUE Yi-guo +3 位作者 BAI Cheng-hao SU Mao-xin ZHANG Kai TAO Yu-fan 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2360-2374,共15页
Floor water inrush is one of the main types of coal mine water hazards.With the development of deep mining,the prediction and evaluation of floor water inrush is particularly significant.This paper proposes a variable... Floor water inrush is one of the main types of coal mine water hazards.With the development of deep mining,the prediction and evaluation of floor water inrush is particularly significant.This paper proposes a variable weight model,which combines a multi-factor interaction matrix(MFIM)and the technique for order performance by similarity to ideal solution(TOPSIS)to implement the risk assessment of floor water inrush in coal mines.Based on the MFIM,the interaction between seven evaluation indices,including the confined water pressure,water supply condition and aquifer water yield property,floor aquifuge thickness,fault water transmitting ability,fracture development degree,mining depth and thickness and their influence on floor water inrush were considered.After calculating the constant weights,the active degree evaluation was used to assign a variable weight to the indices.The values of the middle layer and final risk level were obtained by TOPSIS.The presented model was successfully applied in the 9901 working face in the Taoyang Mine and four additional coal mines and the results were highly consistent with the engineering situations.Compared with the existing nonlinear evaluation methods,the proposed model had advantages in terms of the weighting,principle explanation,and algorithm structure. 展开更多
关键词 floor water inrush risk assessment multi-factor interaction matrix(MFIM) technique for order performance by similarity to ideal solution(TOPSIS) variable weight
在线阅读 下载PDF
Detection and treatment of water inflow in karst tunnel:A case study in Daba tunnel 被引量:7
13
作者 LI Xiang-hui ZHANG Qing-song +3 位作者 ZHANG Xiao LAN Xiong-dong DUAN Chong-hao LIU Jian-guo 《Journal of Mountain Science》 SCIE CSCD 2018年第7期1585-1596,共12页
In a karst tunnel, fissures or cracks that are filled with weathered materials are a type of potential water outlet as they are easily triggered and converted into groundwater outlets under the influence of high groun... In a karst tunnel, fissures or cracks that are filled with weathered materials are a type of potential water outlet as they are easily triggered and converted into groundwater outlets under the influence of high groundwater pressure. A terrible water inrush caused by potential water outlets can seriously hinder the project construction. Potential water outlets and water sources that surrounding the tunnel must be detected before water inflow can be treated. This paper provides a successful case of the detection and treatment of water inflow in a karst tunnel and proposes a potential water outlet detection(PWOD) method in which heavy rainfall(>50 mm/d) is considered a trigger for a potential water outlet. The Daba tunnel located in Hunan province, China, has been constructed in a karst stratum where the rock mass has been weathered intensely by the influence of two faults. Heavy rain triggered some potential water outlets, causing a serious water inrush. The PWOD method was applied in this project for the treatment of water inflow, and six potential water outlets in total were identified through three heavy rains. Meanwhile, a geophysical prospecting technique was also used to detect water sources. The connections between water outlets and water sources were identified with a 3-D graphic that included all of them. According to the distribution of water outlets and water sources, the detection area was divided into three sections and separately treated by curtain grouting. 展开更多
关键词 Karst tunnel Water inrush Potential water outlet detection Geophysical prospecting technique Water inflow GROUTING
原文传递
An attribute recognition model for safe thickness assessment between concealed karst cave and tunnel 被引量:17
14
作者 HUANG Xin LI Shu-cai +5 位作者 XU Zhen-hao GUO Ming SHI Xue-song GAO Bin ZHANG Bo LIU Lang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第4期955-969,共15页
An attribute recognition model for safe thickness assessment between a concealed karst cave and a tunnel is established based on the attribute mathematic theory.The model can be applied to carrying out risk classifica... An attribute recognition model for safe thickness assessment between a concealed karst cave and a tunnel is established based on the attribute mathematic theory.The model can be applied to carrying out risk classification of the safe thickness between a concealed karst cave and a tunnel and to guarantee construction’s safety in tunnel engineering.Firstly,the assessment indicators and classification standard of safe thickness between a concealed karst cave and a tunnel are studied based on the perturbation method.Then some attribute measurement functions are constructed to compute the attribute measurement of each single index and synthetic attribute measurement.Finally,the identification and classification of risk assessment of safe thickness between a concealed karst cave and a tunnel are recognized by the confidence criterion.The results of two engineering application show that the evaluation results agree well with the site situations in construction.The results provide a good guidance for the tunnel construction. 展开更多
关键词 concealed karst cave karst tunnel safe thickness attribute recognition method
在线阅读 下载PDF
Deep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection 被引量:13
15
作者 Zhenhao Xu Wen Ma +1 位作者 Peng Lin Yilei Hua 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1140-1152,共13页
An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNe... An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNet_v2,Inception_v3,Densenet121,ResNet101_v2,and ResNet-101 to develop microscopic image classification models,and then the network structures of seven different convolutional neural networks(CNNs)were compared.It shows that the multi-layer representation of rock features can be represented through convolution structures,thus better feature robustness can be achieved.For the loss function,cross-entropy is used to back propagate the weight parameters layer by layer,and the accuracy of the network is improved by frequent iterative training.We expanded a self-built dataset by using transfer learning and data augmentation.Next,accuracy(acc)and frames per second(fps)were used as the evaluation indexes to assess the accuracy and speed of model identification.The results show that the Xception-based model has the optimum performance,with an accuracy of 97.66%in the training dataset and 98.65%in the testing dataset.Furthermore,the fps of the model is 50.76,and the model is feasible to deploy under different hardware conditions and meets the requirements of rapid lithology identification.This proposed method is proved to be robust and versatile in generalization performance,and it is suitable for both geologists and engineers to identify lithology quickly. 展开更多
关键词 Deep learning Rock microscopic images Automatic classification Lithology identification
在线阅读 下载PDF
A grouting simulation method for quick-setting slurry in karst conduit:The sequential flow and solidification method 被引量:6
16
作者 Zhenhao Xu Dongdong Pan +3 位作者 Shucai Li Yichi Zhang Zehua Bu Jie Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期423-435,共13页
It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial... It is difficult to temporally and spatially track and characterize the slurry viscosity in flowing water during grouting simulation.In this study,a sequential flow and solidification(SFS)method considering the spatial-temporal evolution of slurry viscosity in flowing water in karst conduit is proposed.First,a time-dependent model for the threshold function of slurry viscosity is established.During the grouting process,the spatial-temporal evolution of slurry viscosity is revealed by tracking the diffusion behavior of the slurry injected at different times.This method is capable of describing the gradual solidification process of the slurry during grouting.Furthermore,a physical model of grouting in a karst conduit is developed.Second,the effectiveness of the SFS method in grouting simulation is verified by the experiment of grouting conduit in flowing water.The SFS method enables real-time monitoring of fluid velocity and pressure during grouting in flowing water and provides a feasible calculation method for revealing the grouting plugging mechanism in complex karst conduits at different engineering scales.In addition,it can be used to guide the design of grouting tests in flowing water,improve cost efficiency,and provide theoretical basis for optimizing grouting design and slurry selection. 展开更多
关键词 Karst conduit Sequential flow and solidification(SFS) Quick-setting slurry Grouting simulation method Grouting in flowing water
在线阅读 下载PDF
True triaxial hydraulic fracturing test and numerical simulation of limestone 被引量:10
17
作者 YANG Wei-min GENG Yang +4 位作者 ZHOU Zong-qing LI Lian-chong DING Ruo-song WU Zhong-hu ZHAI Ming-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3025-3039,共15页
Hydraulic fracturing,as a key technology of deep energy exploitation,accelerates the rapid development of the modern petroleum industry.To study the mechanisms of hydraulic fracture propagation and rock failure mode o... Hydraulic fracturing,as a key technology of deep energy exploitation,accelerates the rapid development of the modern petroleum industry.To study the mechanisms of hydraulic fracture propagation and rock failure mode of the vertical well hydraulic fracturing,the true triaxial hydraulic fracturing test and numerical simulation are carried out,and the influence of the principal stress difference,water injection displacement,perforation angle and natural fracture on fracture propagation is analyzed.The results show that the fracture propagation mode of limestone is mainly divided into two types:the single vertical fracture and the transverse-longitudinal crossed complex fracture.Under high displacement,the fracturing pressure is larger,and the secondary fracture is more likely to occur,while variable displacement loading is more likely to induce fracture network.Meanwhile,the amplitude of acoustic emission(AE)waveform of limestone during fracturing is between 0.01 and 0.02 mV,and the main frequency is maintained in the range of 230−300 kHz.When perforation angleθ=45°,it is easy to produce the T-type fracture that connects with the natural fracture,while X-type cracks are generated whenθ=30°.The results can be used as a reference for further study on the mechanism of limestone hydraulic fracturing. 展开更多
关键词 true triaxial hydraulic fracturing acoustic emission particle flow code(PFC) perforation angle natural fracture
在线阅读 下载PDF
恒阻吸能材料及锚固体力学特性研究与应用 被引量:9
18
作者 王琦 辛忠欣 +3 位作者 江贝 王鸣子 何满潮 魏华勇 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第10期3361-3373,共13页
锚固支护作为地下工程围岩控制的主体,与围岩联合承载形成锚固体,共同抵抗动力灾害释放的能量。传统锚杆(索)支护强度、延伸率不足,在抵抗动力灾害时易破断失效。恒阻吸能材料是一种具有高强、高延伸的新型支护材料。为明确恒阻吸能新... 锚固支护作为地下工程围岩控制的主体,与围岩联合承载形成锚固体,共同抵抗动力灾害释放的能量。传统锚杆(索)支护强度、延伸率不足,在抵抗动力灾害时易破断失效。恒阻吸能材料是一种具有高强、高延伸的新型支护材料。为明确恒阻吸能新材料及其锚固体的力学特性,本文开展了恒阻吸能支护材料与现场常用支护材料MG335、MG500的静力拉伸与动力冲击试验。在此基础上,对MG335、MG500与恒阻吸能支护材料锚固下的岩体开展了霍普金森冲击对比试验,研究了高速冲击下锚固体的变形破坏特征。相比于MG335、MG500锚固体,通过霍普金森冲击试验得到恒阻汲能锚固体的峰值应力提高了42.2%与63.9%,所能吸收的动力冲击能量提高了42.0%与63.2%。恒阻吸能支护技术能够增强锚固体的抗冲承载能力与吸能能力。结合上述试验成果,提出了强扰动下围岩恒阻吸能支护的工程建议,并在千米冲击地压矿井中应用。 展开更多
关键词 恒阻吸能 锚固岩体 力学性能 试验研究 现场应用
在线阅读 下载PDF
Energy distribution and effective components analysis of 2^(n) sequence pseudo-random signal 被引量:8
19
作者 Yang YANG Ji-shan HE Di-quan LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期2102-2115,共14页
In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice ... In order to extract usable harmonics from real 2^(n) sequence pseudo-random data,a technical method is proposed.An equation for predicting the average amplitude of the main frequencies is proposed to guide the choice of signal type for different exploration tasks.By the threshold of the amplitude of the transmitted signal,a set of candidate frequencies are first selected.Then,by operating a spectrum envelope method at these candidate frequencies on received data,effective components in data are extracted.A frequency density calculation method is proposed based on a logical number summation method,to reasonably characterize the frequency density in different frequency bands.By applying this method to real data in Sichuan,China,with signal Type 13,75 effective components are extracted,including both main frequencies and harmonics.The result suggests that the number of effective frequencies in the 2^(n) sequence pseudo-random signal can be increased by extracting usable harmonics,without any additional fieldwork. 展开更多
关键词 electromagnetic prospecting 2^(n) pseudo-random signal energy conservation harmonic extraction frequency density
在线阅读 下载PDF
Relationship between rock uniaxial compressive strength and digital core drilling parameters and its forecast method 被引量:10
20
作者 Hongke Gao Qi Wang +3 位作者 Bei Jiang Peng Zhang Zhenhua Jiang Yue Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期605-613,共9页
The rock uniaxial compressive strength(UCS)is the basic parameter for support designs in underground engineering.In particular,the rock UCS should be obtained rapidly for underground engineering with complex geologica... The rock uniaxial compressive strength(UCS)is the basic parameter for support designs in underground engineering.In particular,the rock UCS should be obtained rapidly for underground engineering with complex geological conditions,such as soft rock,fracture areas,and high stress,to adjust the excavation and support plan and ensure construction safety.To solve the problem of obtaining real-time rock UCS at engineering sites,a rock UCS forecast idea is proposed using digital core drilling.The digital core drilling tests and uniaxial compression tests are performed based on the developed rock mass digital drilling system.The results indicate that the drilling parameters are highly responsive to the rock UCS.Based on the cutting and fracture characteristics of the rock digital core drilling,the mechanical analysis of rock cutting provides the digital core drilling strength,and a quantitative relationship model(CDP-UCS model)for the digital core drilling parameters and rock UCS is established.Thus,the digital core drilling-based rock UCS forecast method is proposed to provide a theoretical basis for continuous and quick testing of the surrounding rock UCS. 展开更多
关键词 Digital core drilling Mechanical analysis Rock UCS Quantitative relationship model Forecast method
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部