This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (...This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.展开更多
Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is perf...Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1].展开更多
KICT (Korea Institute of Construction Technology) is conducting a project called “SUPER BRIDGE 200—Development of Low Cost and Long Life Hybrid Cable Stayed Bridge”. This project aims to reduce the construction and...KICT (Korea Institute of Construction Technology) is conducting a project called “SUPER BRIDGE 200—Development of Low Cost and Long Life Hybrid Cable Stayed Bridge”. This project aims to reduce the construction and main- tenance costs of long-span bridges by 20% and double their lifetime through the exploitation of ultra-high performance concrete (UHPC). This paper presents the design and construction of the first pedestrian cable stayed bridge using UHPC developed by KICT. UHPC, compared to conventional concrete, has not only high compressive and tensile strengths but also high ductility. The UHPC developed at KICT is a steel fiber-reinforced cement compound presenting design compressive strength larger than 180 MPa and design tensile strength exceeding 10 MPa with water-to-binder ratio below 0.24 and admixing of 2 volume percentage of steel fiber. To show the applicability of UHPC to structures, a pedestrian cable stayed bridge (Super Bridge I) exploiting the characteristics of the developed UHPC has been planned, designed and erected at KICT. The dimension of UHPC deck is 2.7 m × 7 m as a precast segment with a typical thickness of deck of only 7 cm. However, harmful crack was observed in the deck at the time of the fabrication of the deck segments. Accordingly, new fabrication method was conceived and applied to prevent cracking of the UHPC slender deck. Four UHPC deck segments were fabricated successfully without any crack. After construction, the dynamic characteristics (natural frequencies and mode shapes) were evaluated through vibration tests since several users felt excess vibration. A vertical tuned mass damper (TMD) was proposed and installed on the parapet of the bridge. The TMD reduces the acceleration by about 30% from 0.0316 g to 0.0244 g when two pedestrians are crossing the bridge.展开更多
Dynamic earth pressure induced by machine foundations on a neighboring retaining wall is analyzed with emphasis on factors which control the intensity and location of the design forces. The meshless local Petrov-Galer...Dynamic earth pressure induced by machine foundations on a neighboring retaining wall is analyzed with emphasis on factors which control the intensity and location of the design forces. The meshless local Petrov-Galerkin (MLPG) method is used to analyze the problem for a variety of retaining wall and machine foundation geometries. The soil medium is assumed to be homogeneous and visco-elastic. The machine foundation is idealized as a harmonic sinusoidal dynamic force often encountered in practice. A number of analyses have been made to reveal the effect of the loading frequency, the location and size of the foundation and the soil shear wave velocity on the distribution and magnitude of the dynamic earth pressure. Results indicate that there is a critical frequency and a critical location for which the passive pressure takes the maxima in the entire duration of the dynamic load.展开更多
A single-room,single-storey full-scale brick masonry building with precast RC roofing system was tested thrice under displacement controlled lateral cyclic loading,to assess the effectiveness of the basic repair and s...A single-room,single-storey full-scale brick masonry building with precast RC roofing system was tested thrice under displacement controlled lateral cyclic loading,to assess the effectiveness of the basic repair and seismic strengthening techniques.Initially,the virgin building specimen was loaded laterally to f^tilure.In the second stage,the damaged building was repaired by stitching across the cracks,and tested under the same lateral loading.In the third stage,the twice-damaged structure was repaired once more by stitching and strengthened by twin lintel belt in steel and vertical comer reinforcement, and re-tested.The building strengthened by twin lintel belt in steel showed about 28% higher strength under lateral loading than the virgin building.展开更多
Ultra-high performance concrete (UHPC) is featured by a compressive strength 5 times higher than that of ordinary concrete and by a high durability owing to the control of the chloride penetration speed by its dense s...Ultra-high performance concrete (UHPC) is featured by a compressive strength 5 times higher than that of ordinary concrete and by a high durability owing to the control of the chloride penetration speed by its dense structure. The high strength characteristics of UHPC offer numerous advantages like the reduction of the quantities of cables and foundations by the design of a lightweight superstructure in the case of the long-span bridge preserving its structural performance through axial forces and structures governed by compression. This study conducted the conceptual design of a hybrid cable-stayed bridge with central span of 1000 m and exploiting 200 MPa-class UHPC. The economic efficiency of the conceptual design results of the hybrid cable-stayed bridge with central span of 1000 m and of Sutong Bridge, the longest cable-stayed bridge in the world, was analyzed.展开更多
Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Co...Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied.展开更多
As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corres...As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corresponding flexural performance of the lap spliced construction joint. After having slowed down the strength development of the concrete placed in the joint of the precast deck by means of a curing retardant, the concrete at the interface is crushed so as to expose the steel fibers and the change in the flexural performance is observed experimentally according to the exposure of the steel fibers. The results show that, even if the ultimate strength and stiffness of the UHPC precast deck including the joint are mostly determined by the arrangement details of the rebar lap splice, the exposure of the steel fibers can secure stable ductile behavior and reduce the width of the cracks generated at the precast deck-joint interface under service load.展开更多
This paper presents highly efficient cable erection equipments and methods related to the construction of super-long-span bridges, construction technology of high towers and, technology for offshore foundations curren...This paper presents highly efficient cable erection equipments and methods related to the construction of super-long-span bridges, construction technology of high towers and, technology for offshore foundations currently developed through a R&D on accelerated and cost-saving construction technology for long-span cable bridges to secure our international competitiveness. In the field of cable erection technology, AS and PPWS equipments for highly efficient erection of cable longer than 2000 m, world-class clamping bolt tensioning equipment and shape control system for super-long cable are under development. The technologies developed in the domain of construction of towers are tapered slip form system for the construction of 400 m high tower, shape and erection precision control of elevated tower and, lightweight and modular formwork for slip form system. In the domain of foundation construction, remote controlled survey equipment and analysis system for water-depth of 100 m and depth of 50 m, prediction and evaluation technology of optimal load carrying capacity and settlement complying with international standard and, highly efficient hybrid foundation construction technology suitable for ground acceleration of 0.5 g and deep soft soil are currently developed.展开更多
The development of the tilting train can contribute to solve the economic burden and enhance the transportation means of areas that did not share the benefits of the high speed railway. But the dynamic behavior caused...The development of the tilting train can contribute to solve the economic burden and enhance the transportation means of areas that did not share the benefits of the high speed railway. But the dynamic behavior caused by the interaction between the train and the track as well as the environmental vibrations along the railway should be evaluated to secure the safety of the train and riding comfort. In this paper a study on the characteristics for ground vibration due to the tilting train travelling in the conventional line are carried out. The transmitted load into the ground is computed through a study on the interrelation between the tilting car and the line. This load is applied into the numerical model which is one for the analysis of ground vibration due to the travelling tilting car. The far fields on the numerical model are formed by the absorbing boundary using dashpot, one of the most widely used absorbing boundary in finite element analysis. Using this numerical model, the analysis of the ground vibration characteristics caused by travelling tilting car is performed. From the analysis, it is shown that the transferred load due to the tilting train is larger than that of the conventional train.展开更多
Researches on ultra-high performance concrete (UHPC) have been conducted worldwide owing to its outstanding durability and strength performances. The exploitation of the mechanical properties of UHPC will render it po...Researches on ultra-high performance concrete (UHPC) have been conducted worldwide owing to its outstanding durability and strength performances. The exploitation of the mechanical properties of UHPC will render it possible to achieve economic design through substantial reduction in the cross sectional dimensions and simplification in the reinforcement arrangement. This paper investigates experimentally the load transfer in the prestressed concrete anchorage zone. To provide distinctive features of UHPC compared to ordinary concrete, the cross sectional dimensions of the member were reduced and the stress distribution, deformation and cracking pattern of the PS anchorage zone were examined experimentally according to the degree of reinforcement of the members chosen. The distributions of the bursting stress, spalling stress and longitudinal edge stress in the specimens were observed according to the various types of reinforcement. All the specimens satisfied the load-bearing capacity criterion specified by the European ETAG-013 guidelines and their stress distributions were similar to those in the PS anchorages of post-tensioned members applying ordinary concrete. The cracks propagated longitudinally with lengths up to twice the cross sectional dimensions and their width was smaller than when applying ordinary concrete owing to the bridging effect of the steel fibers in UHPC. Accordingly, the exploitation of the high strength of UHPC enabled us to secure the resistance of the anchorage with no need for particular reinforcing devices.展开更多
The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete ...The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete pylon of long-span cable bridges offers the advantage of being significantly faster than applying the auto-climbing system (ACS) form method. Therefore, this study presents the development of an innovative slip form system for pylons with tapered cross-section. Surface wave inspection system is applied for the determination of slip-up time, wireless hydraulic control system is applied for auto rising, GPS system is used to manage the pylon configuration, and lightweight GFRP (Grass Fiber Reinforced Plastic) panels are applied in the slip form system. Small-scale tests were conducted three times to validate the performance of the developed core technologies, and full-scale tests were conducted twice to validate and verify the developed innovative slip form. The full-scale tapered concrete pylons have hollow shafts and a height of 10 m. The sectional dimensions are varied according to the construction height. The experimental constructions of the tapered pylons using the innovative slip form were conducted successfully. This system is the world’s first application of GFRP slip form panel.展开更多
Many studies on fiber reinforced polymer composite bars, as a substitute for reinforcing bars, have been conducted to solve corrosion of steel in reinforced concrete structures since 1960s’. However, FRP Bars have a ...Many studies on fiber reinforced polymer composite bars, as a substitute for reinforcing bars, have been conducted to solve corrosion of steel in reinforced concrete structures since 1960s’. However, FRP Bars have a lower elastic modulus than steel rebar as a structural component of concrete structures. Material properties with brittleness fracture and low elastic modulus can be improved by combining cheaper steel than carbon or aramid fibers. In this study, prototypes of FRP Bars with inserted steel wires (i.e., “FRP Hybrid Bars”) were developed and their tensile performance was compared depending on the proportion and diameter of steel. The FRP Hybrid Bars were made by dividing them into D13 and D16 according to the diameter and proportion of inserted wires: GFRPs were combined with wires having different diameters of 0.5 mm, 1.0 mm, and 2.0 mm in the proportion of 10%, 30%, 50%, and 70%, respectively. As a result of tensile tests, the elastic modulus of FRP Hybrid Bars were improved as 20% - 190% in comparison with the fully GFRP Bars.展开更多
This paper investigates experimentally the deformation characteristics of the mono strand anchor head used in prestressed concrete bridge. Since the strains measurable in the anchor head are the axial and hoop strains...This paper investigates experimentally the deformation characteristics of the mono strand anchor head used in prestressed concrete bridge. Since the strains measurable in the anchor head are the axial and hoop strains, the deformation characteristics of the anchor head are examined by measuring these strains at various positions and according to the jacking force exerted on the pre-stressing strand. Moreover, the possibility to estimate the jacking force acting in the tendon based upon the measured strains and the corresponding error are evaluated.展开更多
This paper presents the results of fatigue performance tests performed up to 10 million cycles on a load-measuring pot bearing with built-in load cell to verify its field applicability and proposes an empirical temper...This paper presents the results of fatigue performance tests performed up to 10 million cycles on a load-measuring pot bearing with built-in load cell to verify its field applicability and proposes an empirical temperature correction formula. In Part I of this work, various measurement performances of the load-measuring pot bearing were evaluated through static and dynamic loading tests. Bridge bearings are subjected to the effect of fatigue caused by the repeated application of moving loads and exposed to harsh site conditions including cold and hot weathers differently to laboratory conditions. Accordingly, the durability of the load-measuring pot bearing with built-in load cell shall be secured and the environmental effects like temperature shall be minimized for its application on field. This study conducted fatigue tests up to 10 million cycles on a load-measuring pot bearing with the capacity of 1000 kN to examine eventual degradation of the measurement accuracy with respect to the number of fatigue loading cycles. In addition, the experimental temperature correction procedure is proposed to obtain the temperature correction formula enabling to correct the effect of temperature on the load measurement.展开更多
This paper presents the underlying principle and the results of various performance evaluations for a load-measuring pot bearing with built-in load cell. The pot bearing composed of a pot made of steel in which an ela...This paper presents the underlying principle and the results of various performance evaluations for a load-measuring pot bearing with built-in load cell. The pot bearing composed of a pot made of steel in which an elastomer disk is inserted is a bearing supporting larger loads than the elastomeric bearing and accommodating rotational movement. Owing to a Poisson’s ratio close to 0.5, elastomer withstands hydrostatic pressure when confined in a rigid body. Accounting for this principle, the vertical load applied on the pot bearing can be obtained by converting the pressure acting on the elastomer. Therefore, a load-measuring pot bearing is developed in this study by embedding a load cell exhibiting remarkable durability in the base plate of the bearing. The details for the insertion of the load cell in the base plate of the pot were improved through finite element analysis to secure sufficient measurement accuracy. The evaluation of the static performance of the pot bearing applying these improved details verified that the bearing exhibited sufficient accuracy for the intended measurement purpose. The dynamic performance evaluation results indicated that accurate measurement of the dynamic load was also achieved without time lag.展开更多
This paper examines the shear stress and displacement occurring in CFRP tendons through finite element analysis on the parameters influencing the anchoring performance to evaluate the behavioral characteristics of the...This paper examines the shear stress and displacement occurring in CFRP tendons through finite element analysis on the parameters influencing the anchoring performance to evaluate the behavioral characteristics of the bonded type anchorage for CFRP tendon. The selected parameters are the inner angle of the anchorage barrel, the friction between the barrel and filling material, and the elastic modulus of the filling material. The difference in the behavioral characteristics is examined for each parameter. In view of the analytic results, the shear stress developed in the CFRP tendon reduces with larger inner angle of the barrel and lower elastic modulus of the filling material. However, such combination provokes also the increase of the relative displacement of the CFRP tendon. Especially, slip failure may occur due to the lack of the confining force necessary for the anchorage due to the sudden loss of vertical force brought by the wedge force. The experimental results relative to barrel inner angles of 2° and 4° showed that the specimen with an angle of 2° preserved its anchoring performance up to tensile failure whereas the specimen with an angle of 4°?failed in developing its maximum anchoring performance due to slip failure.展开更多
Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedi...Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedical applications because of their outstanding biocompatibility and unique mechanical properties.Widespread use of Mg-based biomedical devices eliminates the need for post-healing biomaterial removal surgery and minimizes the negative consequences of the implantation of permanent biomaterials,including stress shielding and undesired metal ion release in the body.This paper provides a literature review on the properties and manufacturing methods of Mgbased alloys for biomedical applications,including orthopedic implants,cardiovascular applications,surgical wires and staplers,and antitumor activities.Each application of Mg-based biomaterials is investigated from a biological perspective,including matching functional properties,biocompatibility,host tissue responses,and anti-microbial strategies,along with potential additive manufacturing technologies for these applications.Finally,an outlook is presented to provide recommendations for Mg-based biomaterials in the future.展开更多
Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and effic...Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.展开更多
For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arrange...For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arranged on the outer surface of nucleus. Then, by taking into account the nucleus-electron interaction (attractive and repulsive) and the mutual electron-electron repulsions, and by a simple step-by-step nonlinear static analysis program, all the electrons are found to equilibrate on the outer surface of the same sphere, which is concentric and larger than nucleus. In a second stage, starting from an equilibrium sphere of electrons, one of the electrons is subjected to gradual forced removal, radially and outwards with respect to nucleus. Within each removal step, the produced work increment is determined and the increments are summed. When no more significant attraction is exerted by nucleus to removed electron, the total work gives the Ionization Energy. After removing of single electron, the remaining electrons fall on a lower shell, that is, they equilibrate on the outer surface of a smaller concentric sphere. For nucleus-electron interaction, an L-J (Lennard-Jones) type curve, attractive and repulsive, is adopted. When the parameter of this curve is n > 1.0, the Ionization Energy exhibits an upper bound. As parameter n increases from 1.0 up to 2.0, the attractive potential of L-J curve is gradually weakened. The proposed model is applied on Argon. It is observed that, as the number of electrons increases, the radius of equilibrium sphere increases, too, whereas the attractive nucleus-electron potential is reduced;thus the Ionization Energy is reduced, too. Particularly, as the number of electrons and the radius of equilibrium sphere exceed some critical values, the above two last quantities exhibit abrupt falls. A regular polyhedron is revealed, which can accommodate Elements up to atomic number Z = 146, that is 28 more than Z = 118 of existing last Element, as guide for initial locations of electrons in the above first program.展开更多
文摘This study developed an optimal structural system for the hybrid cable-stayed bridge expected to have a durable lifetime of 200 years and of which major structural members are made of ultra high performance concrete (UHPC) with 200 MPa-class compressive strength. This innovative cable-stayed bridge system makes it possible to reduce each of the construction and maintenance costs by 20% compared to the conventional concrete cable-stayed bridge by improving significantly the weight and durability of the bridge. Therefore, detail design is carried out considering a real 800 m cable-stayed bridge and the optimal structure of the hybrid cable-stayed bridge is proposed and verified.
文摘Since the previous strength prediction models for the perfobond rib connector were proposed based upon the results of push-out tests conducted on concretes with compressive strength below 50 MPa, push-out test is performed on perfobond shear connectors applying ultra high performance concretes with compressive strength higher than 80 MPa to evaluate their shear resistance. The test variables are chosen to be the diameter and number of dowel holes and, the change in the shear strength of the perfobond rib connector is examined with respect to the strength of two types of UHPC: steel fiber-reinforced concrete with compressive strength of 180 MPa and concrete without steel fiber with compressive strength of 80 MPa. The test results reveal that higher concrete strength and larger number of holes increased the shear strength, and that higher increase rate in the shear strength was achieved by the dowel action. The comparison with the predictions obtained by the previous models shows that the experimental results are close to the values given by the model proposed by Oguejiofor and Hosain [1].
文摘KICT (Korea Institute of Construction Technology) is conducting a project called “SUPER BRIDGE 200—Development of Low Cost and Long Life Hybrid Cable Stayed Bridge”. This project aims to reduce the construction and main- tenance costs of long-span bridges by 20% and double their lifetime through the exploitation of ultra-high performance concrete (UHPC). This paper presents the design and construction of the first pedestrian cable stayed bridge using UHPC developed by KICT. UHPC, compared to conventional concrete, has not only high compressive and tensile strengths but also high ductility. The UHPC developed at KICT is a steel fiber-reinforced cement compound presenting design compressive strength larger than 180 MPa and design tensile strength exceeding 10 MPa with water-to-binder ratio below 0.24 and admixing of 2 volume percentage of steel fiber. To show the applicability of UHPC to structures, a pedestrian cable stayed bridge (Super Bridge I) exploiting the characteristics of the developed UHPC has been planned, designed and erected at KICT. The dimension of UHPC deck is 2.7 m × 7 m as a precast segment with a typical thickness of deck of only 7 cm. However, harmful crack was observed in the deck at the time of the fabrication of the deck segments. Accordingly, new fabrication method was conceived and applied to prevent cracking of the UHPC slender deck. Four UHPC deck segments were fabricated successfully without any crack. After construction, the dynamic characteristics (natural frequencies and mode shapes) were evaluated through vibration tests since several users felt excess vibration. A vertical tuned mass damper (TMD) was proposed and installed on the parapet of the bridge. The TMD reduces the acceleration by about 30% from 0.0316 g to 0.0244 g when two pedestrians are crossing the bridge.
文摘Dynamic earth pressure induced by machine foundations on a neighboring retaining wall is analyzed with emphasis on factors which control the intensity and location of the design forces. The meshless local Petrov-Galerkin (MLPG) method is used to analyze the problem for a variety of retaining wall and machine foundation geometries. The soil medium is assumed to be homogeneous and visco-elastic. The machine foundation is idealized as a harmonic sinusoidal dynamic force often encountered in practice. A number of analyses have been made to reveal the effect of the loading frequency, the location and size of the foundation and the soil shear wave velocity on the distribution and magnitude of the dynamic earth pressure. Results indicate that there is a critical frequency and a critical location for which the passive pressure takes the maxima in the entire duration of the dynamic load.
文摘A single-room,single-storey full-scale brick masonry building with precast RC roofing system was tested thrice under displacement controlled lateral cyclic loading,to assess the effectiveness of the basic repair and seismic strengthening techniques.Initially,the virgin building specimen was loaded laterally to f^tilure.In the second stage,the damaged building was repaired by stitching across the cracks,and tested under the same lateral loading.In the third stage,the twice-damaged structure was repaired once more by stitching and strengthened by twin lintel belt in steel and vertical comer reinforcement, and re-tested.The building strengthened by twin lintel belt in steel showed about 28% higher strength under lateral loading than the virgin building.
文摘Ultra-high performance concrete (UHPC) is featured by a compressive strength 5 times higher than that of ordinary concrete and by a high durability owing to the control of the chloride penetration speed by its dense structure. The high strength characteristics of UHPC offer numerous advantages like the reduction of the quantities of cables and foundations by the design of a lightweight superstructure in the case of the long-span bridge preserving its structural performance through axial forces and structures governed by compression. This study conducted the conceptual design of a hybrid cable-stayed bridge with central span of 1000 m and exploiting 200 MPa-class UHPC. The economic efficiency of the conceptual design results of the hybrid cable-stayed bridge with central span of 1000 m and of Sutong Bridge, the longest cable-stayed bridge in the world, was analyzed.
文摘Recently, research strives to apply Ultra High Performance Concrete (UHPC) to large-sized structures owing to its remarkable mechanical performance and durability compared to normal concrete. The Korea Institute of Construction Technology proposed SuperBridge800, an edge girder type UHPC cable stayed bridge with central span of 800 m, through its detailed design. The bridge is designed to be erected through the connection of precast UHPC segments. The precast UHPC segment is monolithically composed of one ribbed deck slab and edge girders at each side. The connection between the precast segments is achieved by steel bars at the edge girders and by UHPC cast-in-place wet joint at the slab. Despite of the outstanding mechanical performance of UHPC, the fabrication of large-sized members is a difficult task since UHPC hardens faster than normal concrete and requires a special curing process. Therefore, the constructability of large-sized UHPC segment should be secured to achieve SuperBridge800. Besides, the performance of the connection between segments should also be guaranteed, especially in terms of the fatigue performance of the UHPC cast-in-place joint, which constitutes a weak point. To that goal, two half-scaled UHPC segments are manufactured and the constructability is examined by fabricating a large-sized UHPC member connected with respect to the design conditions. This study conducts rolling fatigue test on the so-fabricated large-sized UHPC member. Rolling fatigue test is carried out up to 2 million cycles considering actual vehicle load at each center and quarter points of the member. The test results confirm that the service limit state is satisfied.
文摘As a solution against the serviceability problem caused by the cracks occurring at the UHPC precast deck-joint interface, this study proposes a method exposing the steel fiber at the interface and evaluates the corresponding flexural performance of the lap spliced construction joint. After having slowed down the strength development of the concrete placed in the joint of the precast deck by means of a curing retardant, the concrete at the interface is crushed so as to expose the steel fibers and the change in the flexural performance is observed experimentally according to the exposure of the steel fibers. The results show that, even if the ultimate strength and stiffness of the UHPC precast deck including the joint are mostly determined by the arrangement details of the rebar lap splice, the exposure of the steel fibers can secure stable ductile behavior and reduce the width of the cracks generated at the precast deck-joint interface under service load.
文摘This paper presents highly efficient cable erection equipments and methods related to the construction of super-long-span bridges, construction technology of high towers and, technology for offshore foundations currently developed through a R&D on accelerated and cost-saving construction technology for long-span cable bridges to secure our international competitiveness. In the field of cable erection technology, AS and PPWS equipments for highly efficient erection of cable longer than 2000 m, world-class clamping bolt tensioning equipment and shape control system for super-long cable are under development. The technologies developed in the domain of construction of towers are tapered slip form system for the construction of 400 m high tower, shape and erection precision control of elevated tower and, lightweight and modular formwork for slip form system. In the domain of foundation construction, remote controlled survey equipment and analysis system for water-depth of 100 m and depth of 50 m, prediction and evaluation technology of optimal load carrying capacity and settlement complying with international standard and, highly efficient hybrid foundation construction technology suitable for ground acceleration of 0.5 g and deep soft soil are currently developed.
文摘The development of the tilting train can contribute to solve the economic burden and enhance the transportation means of areas that did not share the benefits of the high speed railway. But the dynamic behavior caused by the interaction between the train and the track as well as the environmental vibrations along the railway should be evaluated to secure the safety of the train and riding comfort. In this paper a study on the characteristics for ground vibration due to the tilting train travelling in the conventional line are carried out. The transmitted load into the ground is computed through a study on the interrelation between the tilting car and the line. This load is applied into the numerical model which is one for the analysis of ground vibration due to the travelling tilting car. The far fields on the numerical model are formed by the absorbing boundary using dashpot, one of the most widely used absorbing boundary in finite element analysis. Using this numerical model, the analysis of the ground vibration characteristics caused by travelling tilting car is performed. From the analysis, it is shown that the transferred load due to the tilting train is larger than that of the conventional train.
文摘Researches on ultra-high performance concrete (UHPC) have been conducted worldwide owing to its outstanding durability and strength performances. The exploitation of the mechanical properties of UHPC will render it possible to achieve economic design through substantial reduction in the cross sectional dimensions and simplification in the reinforcement arrangement. This paper investigates experimentally the load transfer in the prestressed concrete anchorage zone. To provide distinctive features of UHPC compared to ordinary concrete, the cross sectional dimensions of the member were reduced and the stress distribution, deformation and cracking pattern of the PS anchorage zone were examined experimentally according to the degree of reinforcement of the members chosen. The distributions of the bursting stress, spalling stress and longitudinal edge stress in the specimens were observed according to the various types of reinforcement. All the specimens satisfied the load-bearing capacity criterion specified by the European ETAG-013 guidelines and their stress distributions were similar to those in the PS anchorages of post-tensioned members applying ordinary concrete. The cracks propagated longitudinally with lengths up to twice the cross sectional dimensions and their width was smaller than when applying ordinary concrete owing to the bridging effect of the steel fibers in UHPC. Accordingly, the exploitation of the high strength of UHPC enabled us to secure the resistance of the anchorage with no need for particular reinforcing devices.
文摘The construction of the three-dimensionally shaped pylons higher than 400 m requires a very high technological degree. It is known that the application of the tapered slip form method for the erection of the concrete pylon of long-span cable bridges offers the advantage of being significantly faster than applying the auto-climbing system (ACS) form method. Therefore, this study presents the development of an innovative slip form system for pylons with tapered cross-section. Surface wave inspection system is applied for the determination of slip-up time, wireless hydraulic control system is applied for auto rising, GPS system is used to manage the pylon configuration, and lightweight GFRP (Grass Fiber Reinforced Plastic) panels are applied in the slip form system. Small-scale tests were conducted three times to validate the performance of the developed core technologies, and full-scale tests were conducted twice to validate and verify the developed innovative slip form. The full-scale tapered concrete pylons have hollow shafts and a height of 10 m. The sectional dimensions are varied according to the construction height. The experimental constructions of the tapered pylons using the innovative slip form were conducted successfully. This system is the world’s first application of GFRP slip form panel.
文摘Many studies on fiber reinforced polymer composite bars, as a substitute for reinforcing bars, have been conducted to solve corrosion of steel in reinforced concrete structures since 1960s’. However, FRP Bars have a lower elastic modulus than steel rebar as a structural component of concrete structures. Material properties with brittleness fracture and low elastic modulus can be improved by combining cheaper steel than carbon or aramid fibers. In this study, prototypes of FRP Bars with inserted steel wires (i.e., “FRP Hybrid Bars”) were developed and their tensile performance was compared depending on the proportion and diameter of steel. The FRP Hybrid Bars were made by dividing them into D13 and D16 according to the diameter and proportion of inserted wires: GFRPs were combined with wires having different diameters of 0.5 mm, 1.0 mm, and 2.0 mm in the proportion of 10%, 30%, 50%, and 70%, respectively. As a result of tensile tests, the elastic modulus of FRP Hybrid Bars were improved as 20% - 190% in comparison with the fully GFRP Bars.
文摘This paper investigates experimentally the deformation characteristics of the mono strand anchor head used in prestressed concrete bridge. Since the strains measurable in the anchor head are the axial and hoop strains, the deformation characteristics of the anchor head are examined by measuring these strains at various positions and according to the jacking force exerted on the pre-stressing strand. Moreover, the possibility to estimate the jacking force acting in the tendon based upon the measured strains and the corresponding error are evaluated.
文摘This paper presents the results of fatigue performance tests performed up to 10 million cycles on a load-measuring pot bearing with built-in load cell to verify its field applicability and proposes an empirical temperature correction formula. In Part I of this work, various measurement performances of the load-measuring pot bearing were evaluated through static and dynamic loading tests. Bridge bearings are subjected to the effect of fatigue caused by the repeated application of moving loads and exposed to harsh site conditions including cold and hot weathers differently to laboratory conditions. Accordingly, the durability of the load-measuring pot bearing with built-in load cell shall be secured and the environmental effects like temperature shall be minimized for its application on field. This study conducted fatigue tests up to 10 million cycles on a load-measuring pot bearing with the capacity of 1000 kN to examine eventual degradation of the measurement accuracy with respect to the number of fatigue loading cycles. In addition, the experimental temperature correction procedure is proposed to obtain the temperature correction formula enabling to correct the effect of temperature on the load measurement.
文摘This paper presents the underlying principle and the results of various performance evaluations for a load-measuring pot bearing with built-in load cell. The pot bearing composed of a pot made of steel in which an elastomer disk is inserted is a bearing supporting larger loads than the elastomeric bearing and accommodating rotational movement. Owing to a Poisson’s ratio close to 0.5, elastomer withstands hydrostatic pressure when confined in a rigid body. Accounting for this principle, the vertical load applied on the pot bearing can be obtained by converting the pressure acting on the elastomer. Therefore, a load-measuring pot bearing is developed in this study by embedding a load cell exhibiting remarkable durability in the base plate of the bearing. The details for the insertion of the load cell in the base plate of the pot were improved through finite element analysis to secure sufficient measurement accuracy. The evaluation of the static performance of the pot bearing applying these improved details verified that the bearing exhibited sufficient accuracy for the intended measurement purpose. The dynamic performance evaluation results indicated that accurate measurement of the dynamic load was also achieved without time lag.
文摘This paper examines the shear stress and displacement occurring in CFRP tendons through finite element analysis on the parameters influencing the anchoring performance to evaluate the behavioral characteristics of the bonded type anchorage for CFRP tendon. The selected parameters are the inner angle of the anchorage barrel, the friction between the barrel and filling material, and the elastic modulus of the filling material. The difference in the behavioral characteristics is examined for each parameter. In view of the analytic results, the shear stress developed in the CFRP tendon reduces with larger inner angle of the barrel and lower elastic modulus of the filling material. However, such combination provokes also the increase of the relative displacement of the CFRP tendon. Especially, slip failure may occur due to the lack of the confining force necessary for the anchorage due to the sudden loss of vertical force brought by the wedge force. The experimental results relative to barrel inner angles of 2° and 4° showed that the specimen with an angle of 2° preserved its anchoring performance up to tensile failure whereas the specimen with an angle of 4°?failed in developing its maximum anchoring performance due to slip failure.
基金supported by National Research Foundation of Korea(NRF)grants funded by the Korean Government(MSIT)[grant numbers RS-2023-00207763 and NRF-2022R1A2C2010350].
文摘Magnesium(Mg)and its alloys have recently gained increasing attention in the biomedical field as promising biodegradable materials with harmless degradation products.Magnesium-based alloys have a wide range of biomedical applications because of their outstanding biocompatibility and unique mechanical properties.Widespread use of Mg-based biomedical devices eliminates the need for post-healing biomaterial removal surgery and minimizes the negative consequences of the implantation of permanent biomaterials,including stress shielding and undesired metal ion release in the body.This paper provides a literature review on the properties and manufacturing methods of Mgbased alloys for biomedical applications,including orthopedic implants,cardiovascular applications,surgical wires and staplers,and antitumor activities.Each application of Mg-based biomaterials is investigated from a biological perspective,including matching functional properties,biocompatibility,host tissue responses,and anti-microbial strategies,along with potential additive manufacturing technologies for these applications.Finally,an outlook is presented to provide recommendations for Mg-based biomaterials in the future.
基金Project supported by the National Natural Sciences Foundation of China(Nos.59525813 and 19872066)the Cardiff Advanced Chinese Engineering Centre of Cardiff University.
文摘Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
文摘For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arranged on the outer surface of nucleus. Then, by taking into account the nucleus-electron interaction (attractive and repulsive) and the mutual electron-electron repulsions, and by a simple step-by-step nonlinear static analysis program, all the electrons are found to equilibrate on the outer surface of the same sphere, which is concentric and larger than nucleus. In a second stage, starting from an equilibrium sphere of electrons, one of the electrons is subjected to gradual forced removal, radially and outwards with respect to nucleus. Within each removal step, the produced work increment is determined and the increments are summed. When no more significant attraction is exerted by nucleus to removed electron, the total work gives the Ionization Energy. After removing of single electron, the remaining electrons fall on a lower shell, that is, they equilibrate on the outer surface of a smaller concentric sphere. For nucleus-electron interaction, an L-J (Lennard-Jones) type curve, attractive and repulsive, is adopted. When the parameter of this curve is n > 1.0, the Ionization Energy exhibits an upper bound. As parameter n increases from 1.0 up to 2.0, the attractive potential of L-J curve is gradually weakened. The proposed model is applied on Argon. It is observed that, as the number of electrons increases, the radius of equilibrium sphere increases, too, whereas the attractive nucleus-electron potential is reduced;thus the Ionization Energy is reduced, too. Particularly, as the number of electrons and the radius of equilibrium sphere exceed some critical values, the above two last quantities exhibit abrupt falls. A regular polyhedron is revealed, which can accommodate Elements up to atomic number Z = 146, that is 28 more than Z = 118 of existing last Element, as guide for initial locations of electrons in the above first program.