The high energy density of green synthetic liquid chemicals and fuels makes them ideal for sustainable energy storage and transportation applications.Electroreduction of carbon dioxide(CO_(2))directly into such high v...The high energy density of green synthetic liquid chemicals and fuels makes them ideal for sustainable energy storage and transportation applications.Electroreduction of carbon dioxide(CO_(2))directly into such high value-added chemicals can help us achieve a renewable C cycle.Such electrochemical reduction typically suffers from low faradaic efficiencies(FEs)and generates a mixture of products due to the complexity of controlling the reaction selectivity.This perspective summarizes recent advances in the mechanistic understanding of CO_(2) reduction reaction pathways toward liquid products and the state-of-the-art catalytic materials for conversion of CO_(2) to liquid C1(e.g.,formic acid,methanol)and C2+products(e.g.,acetic acid,ethanol,n-propanol).Many liquid fuels are being produced with FEs between 80%and 100%.We discuss the use of structure-binding energy relationships,computational screening,and machine learning to identify promising candidates for experimental validation.Finally,we classify strategies for controlling catalyst selectivity and summarize breakthroughs,prospects,and challenges in electrocatalytic CO_(2) reduction to guide future developments.展开更多
基金supported by the Joint Funds of the National Natural Science Foundation of China(U24B20201)National Natural Science Foundation of China(22372007 and 21972010)+1 种基金the Fundamental Research Funds for the Central Universities(JD2427)the SRC Center for Electron Transfer(2021R1A5A1030054)funded by NRF Korea and AI Graduate School Program(RS-2021-II211343).
文摘The high energy density of green synthetic liquid chemicals and fuels makes them ideal for sustainable energy storage and transportation applications.Electroreduction of carbon dioxide(CO_(2))directly into such high value-added chemicals can help us achieve a renewable C cycle.Such electrochemical reduction typically suffers from low faradaic efficiencies(FEs)and generates a mixture of products due to the complexity of controlling the reaction selectivity.This perspective summarizes recent advances in the mechanistic understanding of CO_(2) reduction reaction pathways toward liquid products and the state-of-the-art catalytic materials for conversion of CO_(2) to liquid C1(e.g.,formic acid,methanol)and C2+products(e.g.,acetic acid,ethanol,n-propanol).Many liquid fuels are being produced with FEs between 80%and 100%.We discuss the use of structure-binding energy relationships,computational screening,and machine learning to identify promising candidates for experimental validation.Finally,we classify strategies for controlling catalyst selectivity and summarize breakthroughs,prospects,and challenges in electrocatalytic CO_(2) reduction to guide future developments.