Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolan...Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.展开更多
The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusio...The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusion height and random position distribution of abrasive grains on the abrasive wheel surface.This study investigated the distribution of undeformed chip thickness and grinding force considering the non-uniform characteristics of abrasive wheel in the grinding of K4002 nickel-based superalloy.First,a novel grinding force model was established through a kinematic-geometric analysis and a grain-workpiece contact analysis.Then,a series of grinding experiments were conducted for verifying the model.The results indicate that the distribution of undeformed chip thickness is highly consistent with the Gaussian distribution formula.The increase in the grinding depth mainly leads to an increase in the average value of Gaussian distribution.On the contrary,the increase in the workpiece infeed speed or the decrease in the grinding speed mainly increases the standard deviation of Gaussian distribution.The average and maximum errors of the grinding force model are 4.9%and 14.6%respectively,indicating that the model is of high predication accuracy.展开更多
A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,t...A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,the aging rates between two age groups are set to be constant.The existence-and-uniqueness of global positive solution is firstly showed.Then,by constructing several appropriate Lyapunov functions and using the high-dimensional Itô’s formula,the sufficient conditions for the stochastic extinction and stochastic persistence of the exposed individuals and the infected individuals are obtained.The stochastic extinction indicator and the stochastic persistence indicator are less-valued expressions compared with the basic reproduction number.Meanwhile,the main results of this study are modified into multi-age groups.Furthermore,by using the surveillance data for Fujian Provincial Center for Disease Control and Prevention,Fuzhou COVID-19 epidemic is chosen to carry out the numerical simulations,which show that the age group of the population plays the vital role when studying infectious diseases.展开更多
This study presents a thorough and holistic review of various studies focusing on the structural analysis of Oil and Gas(O&G)pipelines,with an emphasis on various defect modes.The study appraised pipeline-related ...This study presents a thorough and holistic review of various studies focusing on the structural analysis of Oil and Gas(O&G)pipelines,with an emphasis on various defect modes.The study appraised pipeline-related articles from the empirical,semi-empirical,analytical,and numerical studies.However,the study’s core objective remains to address the persistent challenge that often leads to Burst Pressure Loss(BPL)in a pipeline.These mechanical-associated damages,which can result in BPL,may include pipe scratches,dents,or cracks.Therefore,training a large volume of datasets in neural network architectures or the finite element domain is crucial in this context.The study further explores previous research to gain a deeper insight into how many modes of damage enhance loss in Burst Pressure(BP).The study further synthesises significant reasons why pipeline Structural Health Failures(SHFs)occur,as drawn from existing literature.Failure scenarios in pipeline dent,crack,fracture,buckling,fatigue,corrosion,BPL,and Third-Party Damage(TPD)could result from mechanical deformation,ageing,insufficient real-time monitoring,and TPD influences.Many of the assessed articles conclude that the experimental approach and Finite Element Method(FEM)are valid and can accurately validate one another in the analysis and prediction of pipeline failures.However,this study offers valuable and comprehensive resources for pipeline engineers,academic researchers,and industry professionals.Again,the study is crucial for pipeline fabricators,installers,and operators to keep up with maintenance,repairs,and predictions.展开更多
To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’...To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’along the spiral trajectory,was proposed.From the kinematics analysis,it is found that the machining quality of micro-dimpled structures is highly dependent on the machining trajectory using spiral trajectory tool reciprocating motion.To reveal this causation,simulation modelling and experimental studies were carried out.A simulation model was developed to quantitatively and qualitatively investigate the influence of the trajectory discretization strategies(constant-angle and constant-arc length)and parameters(discrete angle,discrete arc length,and pitch)on surface texture and residual height of micro-dimpled structures.Subsequently,micro-dimpled structures were milled under different trajectory discretization strategies and parameters with spiral trajectory tool reciprocating motion.A comprehensive comparison between the milled results and simulation analysis was made based on geometry accuracy,surface morphology and surface roughness of milled dimples.Meanwhile,the errors and factors affecting the above three aspects were analyzed.The results demonstrate both the feasibility of the established simulation model and the machining capability of this machining way in milling high-quality micro-dimpled structures.Spiral trajectory tool reciprocating motion provides a new machining way for milling micro-dimpled structures and micro-dimpled functional surfaces.And an appropriate machining trajectory can be generated based on the optimized trajectory parameters,thus contributing to the improvement of machining quality and efficiency.展开更多
This paper presents a multi-module oscillating water column(OWC)wave energy converter(WEC)array system,comprising seven interconnected OWC modules.The modules are connected by elastic ropes with clumped weights positi...This paper presents a multi-module oscillating water column(OWC)wave energy converter(WEC)array system,comprising seven interconnected OWC modules.The modules are connected by elastic ropes with clumped weights positioned at the ropes'midpoints.Three distinct mooring systems are designed for this OWC array,and the impact of mooring configurations on the hydrodynamic responses of the OWCs and mooring tensions is thoroughly examined.Three-dimensional potential flow theory is applied to perform time domain analyses.The motion responses of representative modules,the tension of specific mooring lines,and the spacing between adjacent modules in the array system are investigated through a comprehensive coupled dynamic analysis in the time domain.Based on these analyses,recommendations are provided for the optimal mooring system configuration for the array system.展开更多
The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelli...The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.展开更多
The high stress levels in tall tailings dams can lead to particle crushing.Understanding the compressibility and breakage characteristics of tailings particles will contribute to the advancement to the design and cons...The high stress levels in tall tailings dams can lead to particle crushing.Understanding the compressibility and breakage characteristics of tailings particles will contribute to the advancement to the design and construction processes of high-rise tailings dams,as well as the accurate evaluation of the stability of tailings storage facilities(TSFs).This paper presents the results of a series of detailed one-dimensional oedometer compression tests conducted to investigate the compression behavior and particle breakage of iron ore tailings(IOTs)collected from two typical TSFs,with different initial particle size distributions and a wide range of initial specific volumes,under effective vertical stresses of up to 4.8 MPa.The results show that the compression paths of the IOTs were slowly convergent,and this nontransitional mode of compression behavior experienced a significant amount of particle breakage.The relative breakage(Br)was used to quantify the amount of breakage and the input specific work(W)was adopted to evaluate the factors influencing Br.The initial breakage stress of the IOTs was less than 0.2 MPa.For the finer tailings,Br increased with increasing vertical stresses until it reached a threshold,after which Br tended to remain constant.However,coarser IOTs continued to experience crushing even at 4.8 MPa.The particle breakage in the coarser IOTs is much more significant than it in the finer IOTs overall.It was also observed that the tailings grains within the loose specimens broke more easily than those within the dense specimens.Additionally,three types of particle crushing modes were identified for IOTs under one-dimensional compression,namely,abrasion,chipping,and splitting.展开更多
Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulati...Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulation method consisting of hydrodynamic and structural calculations has been used to evaluate a catamaran pontoon’s motion and structural integrity.Four different space sizes are set for the pontoon system:5 m,5.5 m,6 m,and 6.5 m.The frequency domain shows that the pontoon space affects the RAO in wave periods ranging from 3 s to 5 s.At wave periods of 3 s,4 s,and 5 s,the pontoon space significantly affects the maximum motion and chain tension parameter values,which are evaluated via time domain simulation.The critical stress of the pontoon is shown at a wave period of 5 s for 5 m and 5.5 m of pontoon space,which shows that the stress can reach 248 MPa.展开更多
For the solution of peridynamic equations of motion,a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches.In contrast,the literature has limited analytical solutions.This ...For the solution of peridynamic equations of motion,a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches.In contrast,the literature has limited analytical solutions.This study develops a novel analytical solution for one-dimensional peridynamic models,considering the effect of damping.After demonstrating the details of the analytical solution,various demonstration problems are presented.First,the free vibration of a damped system is considered for under-damped and critically damped conditions.Peridynamic solutions and results from the classical theory are compared against each other,and excellent agreement is observed between the two approaches.Next,forced vibration analyses of undamped and damped conditions are performed.In addition,the effect of horizon size is investigated.It is shown that for smaller horizon sizes,peridynamic results agree well with classical results,whereas results from these two approaches deviate from each other as the horizon size increases.展开更多
Internal solitary waves(ISWs) are a common phenomenon beneath the ocean surface and represent a significant environmental hazard that must be considered for the safe navigation of submersibles. A numerical simulation ...Internal solitary waves(ISWs) are a common phenomenon beneath the ocean surface and represent a significant environmental hazard that must be considered for the safe navigation of submersibles. A numerical simulation model for the interaction of solitary waves with submersibles at a large scale has been developed. The Miyata-ChoiCamassa(MCC) equation serves as the basis for generating ISWs. The impacts of the submergence depth, wave amplitude, and advancing velocity on the motion response and load characteristics of the submersible are examined in detail. This study elucidates the governing laws and mechanisms underlying the impact of ISWs on submersibles.The research findings indicate that shorter distances to the undisturbed surface, higher wave amplitudes, and fasteradvancing speeds result in greater effects on submersibles. For a submersible operating in the lower layer, both the alteration in density near the wave interface and the dynamic pressure induced by ISWs can reduce its lift, potentially resulting in a rapid descent. It is imperative to pay considerable attention to the impact of ISWs, as they have the potential to precipitate a loss of control of the submersible.展开更多
Installing annular wave-energy converters(WECs)on the columns of floating wind platforms in the form of a coaxial-cylinder provides a convenient means of integration.Extant coaxial-cylinder-type wind-wave hybrid syste...Installing annular wave-energy converters(WECs)on the columns of floating wind platforms in the form of a coaxial-cylinder provides a convenient means of integration.Extant coaxial-cylinder-type wind-wave hybrid systems are mostly based on single-column platforms such as spars(single coaxial-cylinder hybrid system'hereafter).Systems based on multiple-column platforms such as semi-submersible platforms('multiple coaxial-cylinder hybrid systems'hereafter)are rarely seen or studied,despite their superiority in wave-power absorption due to the use of multiple WECs as well as in dynamic stability.This paper proposes a novel WindFloat-annular-WEC hybrid system,based on our study investigating its dynamic and power features,and optimizing the geometry and power take-off of the WECs.Our results show that the dynamic and power features of a multiple coaxial-cylinder hybrid system are different from those of a single coaxial-cylinder hybrid system,so the same optimization parameters cannot be directly applied.Flatter annular WECs absorb slightly more power in a wider wave-period range,but their geometry is confined by limitations in installation and structural strength.The overall effect of an oblique incident wave is greater intensity in the motions of the hybrid system in yaw and the direction perpendicular to propagation,although the difference is small and maybe negligible.展开更多
Atomic-level manufacturing,as the "keystone" of future technology,marks the transformative shift from the micro/nano era based on "classical theory" to the atomic era grounded in "quantum theo...Atomic-level manufacturing,as the "keystone" of future technology,marks the transformative shift from the micro/nano era based on "classical theory" to the atomic era grounded in "quantum theory".It enables the precise control of matter arrangement and composition at the atomic scale,thereby achieving large-scale production of atomically precise and structured products.Electrochemical deposition(ECD),a typical "atom addition" fabrication method for electrochemical atomic and close-to-atomic scale manufacturing(EC-ACSM),enables precise control over material properties at the atomic scale,allowing breakthroughs in revolutionary performance of semiconductors,quantum computing,new materials,nanomedicine,etc.This review explores the fundamentals of EC-ACSM,particularly at the electrode/electrolyte interface,and investigates maskless ECD techniques,highlighting their advantages,limitations,and the role of in situ monitoring and advanced simulations in the process optimization.However,atomic electrochemical deposition faces significant challenges in precise control over atom-ion interactions,electrode-electrolyte interfacial dynamics,and surface defects.In the future,overcoming these obstacles is critical to advancing EC-ACSM and unlocking its full potential in scalability for industrial applications.EC-ACSM can drive the highly customized design of materials and offer strong technological support for the development of future science,ushering in a new atomic era of material innovation and device manufacturing.展开更多
Leveraging surface texturing to realize significant friction reduction at contact interfaces has emerged as a preferred technique among tribology experts,boosting tribological energy efficiency and sustainability.This...Leveraging surface texturing to realize significant friction reduction at contact interfaces has emerged as a preferred technique among tribology experts,boosting tribological energy efficiency and sustainability.This review systematically demonstrates optimization strategies,advanced manufacturing methods,typical applications,and outlooks of technical challenges toward surface texturing for friction reduction.Firstly,the lubricated contact models of microtextures are introduced.Then,we provide a framework of state-of-the-art research on synergistic friction optimization strategies of microtexture structures,surface treatments,liquid lubricants,and external energy fields.A comparative analysis evaluates the strengths and weaknesses of manufacturing techniques commonly employed for microtextured surfaces.The latest research advancements in microtextures in different application scenarios are highlighted.Finally,the challenges and directions of future research on surface texturing technology are briefly addressed.This review aims to elaborate on the worldwide progress in the optimization,manufacturing,and application of microtexture-enabled friction reduction technologies to promote their practical utilizations.展开更多
1 Introduction Amid escalating global climate change,the“dual carbon”goals of carbon peak and carbon neutrality have become a focal point of global attention and an important strategy for sustainable development[1]....1 Introduction Amid escalating global climate change,the“dual carbon”goals of carbon peak and carbon neutrality have become a focal point of global attention and an important strategy for sustainable development[1].With the rapid development of renewable energy technologies and the increasing public demand for environmental protection and low-carbon living,the adoption of new energy vehicles,particularly electric vehicles(EVs).展开更多
Pleurotus ostreatus,a saprotrophic fungus,has been proposed for the remediation of organic contaminants in soils and more recently for modifying the hydraulic and mechanical behaviour of granular soils.The in situ per...Pleurotus ostreatus,a saprotrophic fungus,has been proposed for the remediation of organic contaminants in soils and more recently for modifying the hydraulic and mechanical behaviour of granular soils.The in situ perfor-mance of fungal-based biotechnologies will be controlled by the fungal growth and associated biochemical activity that can be achieved in soil.In this study,the influence of environmental conditions(temperature,degree of saturation),substrate type(lignocellulose and spent coffee grounds)and concentration on the my-celium growth of P.ostreatus in sand are investigated.Furthermore,the evolution of growth/survival indicators(respiration,ergosterol concentration)and enzymatic activity(laccase,manganese peroxidase)are investigated.Temperature was shown to have a strong influence on the growth of P.ostreatus in sand:growth was observed to be delayed at low temperatures(e.g.5℃),whereas growth was prevented at high temperatures(e.g.35℃).No growth was observed at very low degrees of saturation(S,=0%and 1.2%),indicating there is a critical water content required to support P.ostreatus growth.Within the mid-range of water contents tested radially,growth of P.ostreatus was similar.However,growth under saturated soil conditions was restricted to the air-water at-mosphere due to the requirement for oxygen availability.Low substrate concentrations(1%-5%)resulted in high radial growth of P.ostreatus,whereas increasing substrate content further acted to reduce radial growth,but visual observations indicated that fungal biomass density increased.These results are important for under-standing the feasibility of P.ostreatus growth under specific site conditions and for the design of successful treatment strategies.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415,and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-IV-002-001 and P2023-B-IV-003-001)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the National Key Laboratory of Science and Technology on Helicopter Transmission in NUAA(No.HTL-A-22G12).
文摘Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-Ⅳ-002-001 and P2023-B-Ⅳ-003-001)+3 种基金the Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology(No.JSKL2223K01)the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the Henan Science and Technology Public Relations Project(No.212102210445).
文摘The undeformed chip thickness and grinding force are key parameters for revealing the material removal mechanism in the grinding process.However,they are difficult to be well expressed due to the ununiformed protrusion height and random position distribution of abrasive grains on the abrasive wheel surface.This study investigated the distribution of undeformed chip thickness and grinding force considering the non-uniform characteristics of abrasive wheel in the grinding of K4002 nickel-based superalloy.First,a novel grinding force model was established through a kinematic-geometric analysis and a grain-workpiece contact analysis.Then,a series of grinding experiments were conducted for verifying the model.The results indicate that the distribution of undeformed chip thickness is highly consistent with the Gaussian distribution formula.The increase in the grinding depth mainly leads to an increase in the average value of Gaussian distribution.On the contrary,the increase in the workpiece infeed speed or the decrease in the grinding speed mainly increases the standard deviation of Gaussian distribution.The average and maximum errors of the grinding force model are 4.9%and 14.6%respectively,indicating that the model is of high predication accuracy.
基金Supported by National Natural Science Foundation of China(61911530398,12231012)Consultancy Project by the Chinese Academy of Engineering(2022-JB-06,2023-JB-12)+3 种基金the Natural Science Foundation of Fujian Province of China(2021J01621)Special Projects of the Central Government Guiding Local Science and Technology Development(2021L3018)Royal Society of Edinburgh(RSE1832)Engineering and Physical Sciences Research Council(EP/W522521/1).
文摘A stochastic epidemic model with two age groups is established in this study,in which the susceptible(S),the exposed(E),the infected(I),the hospitalized(H)and the recovered(R)are involved within the total population,the aging rates between two age groups are set to be constant.The existence-and-uniqueness of global positive solution is firstly showed.Then,by constructing several appropriate Lyapunov functions and using the high-dimensional Itô’s formula,the sufficient conditions for the stochastic extinction and stochastic persistence of the exposed individuals and the infected individuals are obtained.The stochastic extinction indicator and the stochastic persistence indicator are less-valued expressions compared with the basic reproduction number.Meanwhile,the main results of this study are modified into multi-age groups.Furthermore,by using the surveillance data for Fujian Provincial Center for Disease Control and Prevention,Fuzhou COVID-19 epidemic is chosen to carry out the numerical simulations,which show that the age group of the population plays the vital role when studying infectious diseases.
文摘This study presents a thorough and holistic review of various studies focusing on the structural analysis of Oil and Gas(O&G)pipelines,with an emphasis on various defect modes.The study appraised pipeline-related articles from the empirical,semi-empirical,analytical,and numerical studies.However,the study’s core objective remains to address the persistent challenge that often leads to Burst Pressure Loss(BPL)in a pipeline.These mechanical-associated damages,which can result in BPL,may include pipe scratches,dents,or cracks.Therefore,training a large volume of datasets in neural network architectures or the finite element domain is crucial in this context.The study further explores previous research to gain a deeper insight into how many modes of damage enhance loss in Burst Pressure(BP).The study further synthesises significant reasons why pipeline Structural Health Failures(SHFs)occur,as drawn from existing literature.Failure scenarios in pipeline dent,crack,fracture,buckling,fatigue,corrosion,BPL,and Third-Party Damage(TPD)could result from mechanical deformation,ageing,insufficient real-time monitoring,and TPD influences.Many of the assessed articles conclude that the experimental approach and Finite Element Method(FEM)are valid and can accurately validate one another in the analysis and prediction of pipeline failures.However,this study offers valuable and comprehensive resources for pipeline engineers,academic researchers,and industry professionals.Again,the study is crucial for pipeline fabricators,installers,and operators to keep up with maintenance,repairs,and predictions.
基金co-supported the National Natural Science Foundation of China(No.52235010)the Heilongjiang Postdoctoral Fund(No.LBH-Z22136)the New Era Longjiang Excellent Master and Doctoral Dissertation Fund(No.LJYXL2022-057).
文摘To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’along the spiral trajectory,was proposed.From the kinematics analysis,it is found that the machining quality of micro-dimpled structures is highly dependent on the machining trajectory using spiral trajectory tool reciprocating motion.To reveal this causation,simulation modelling and experimental studies were carried out.A simulation model was developed to quantitatively and qualitatively investigate the influence of the trajectory discretization strategies(constant-angle and constant-arc length)and parameters(discrete angle,discrete arc length,and pitch)on surface texture and residual height of micro-dimpled structures.Subsequently,micro-dimpled structures were milled under different trajectory discretization strategies and parameters with spiral trajectory tool reciprocating motion.A comprehensive comparison between the milled results and simulation analysis was made based on geometry accuracy,surface morphology and surface roughness of milled dimples.Meanwhile,the errors and factors affecting the above three aspects were analyzed.The results demonstrate both the feasibility of the established simulation model and the machining capability of this machining way in milling high-quality micro-dimpled structures.Spiral trajectory tool reciprocating motion provides a new machining way for milling micro-dimpled structures and micro-dimpled functional surfaces.And an appropriate machining trajectory can be generated based on the optimized trajectory parameters,thus contributing to the improvement of machining quality and efficiency.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52301322,52025112,and 52331011)Natural Science Foundation of Jiangsu Province(Grant No.BK20220653)。
文摘This paper presents a multi-module oscillating water column(OWC)wave energy converter(WEC)array system,comprising seven interconnected OWC modules.The modules are connected by elastic ropes with clumped weights positioned at the ropes'midpoints.Three distinct mooring systems are designed for this OWC array,and the impact of mooring configurations on the hydrodynamic responses of the OWCs and mooring tensions is thoroughly examined.Three-dimensional potential flow theory is applied to perform time domain analyses.The motion responses of representative modules,the tension of specific mooring lines,and the spacing between adjacent modules in the array system are investigated through a comprehensive coupled dynamic analysis in the time domain.Based on these analyses,recommendations are provided for the optimal mooring system configuration for the array system.
基金supported by the National Natural Science Foundation of China(No.52275104)the Science and Technology Innovation Program of Hunan Province(No.2023RC3097).
文摘The monitoring signals of bearings from single-source sensor often contain limited information for characterizing various working condition,which may lead to instability and uncertainty of the class-imbalanced intelligent fault diagnosis.On the other hand,the vectorization of multi-source sensor signals may not only generate high-dimensional vectors,leading to increasing computational complexity and overfitting problems,but also lose the structural information and the coupling information.This paper proposes a new method for class-imbalanced fault diagnosis of bearing using support tensor machine(STM)driven by heterogeneous data fusion.The collected sound and vibration signals of bearings are successively decomposed into multiple frequency band components to extract various time-domain and frequency-domain statistical parameters.A third-order hetero-geneous feature tensor is designed based on multisensors,frequency band components,and statistical parameters.STM-based intelligent model is constructed to preserve the structural information of the third-order heterogeneous feature tensor for bearing fault diagnosis.A series of comparative experiments verify the advantages of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.41630640,41790445)the National Key Research and Development Program of China(Grant No.2022YFC3003205).
文摘The high stress levels in tall tailings dams can lead to particle crushing.Understanding the compressibility and breakage characteristics of tailings particles will contribute to the advancement to the design and construction processes of high-rise tailings dams,as well as the accurate evaluation of the stability of tailings storage facilities(TSFs).This paper presents the results of a series of detailed one-dimensional oedometer compression tests conducted to investigate the compression behavior and particle breakage of iron ore tailings(IOTs)collected from two typical TSFs,with different initial particle size distributions and a wide range of initial specific volumes,under effective vertical stresses of up to 4.8 MPa.The results show that the compression paths of the IOTs were slowly convergent,and this nontransitional mode of compression behavior experienced a significant amount of particle breakage.The relative breakage(Br)was used to quantify the amount of breakage and the input specific work(W)was adopted to evaluate the factors influencing Br.The initial breakage stress of the IOTs was less than 0.2 MPa.For the finer tailings,Br increased with increasing vertical stresses until it reached a threshold,after which Br tended to remain constant.However,coarser IOTs continued to experience crushing even at 4.8 MPa.The particle breakage in the coarser IOTs is much more significant than it in the finer IOTs overall.It was also observed that the tailings grains within the loose specimens broke more easily than those within the dense specimens.Additionally,three types of particle crushing modes were identified for IOTs under one-dimensional compression,namely,abrasion,chipping,and splitting.
基金financially supported by the Riset Pengembangan dan Penerapan(RPP),Diponegoro University 2023 research scheme with contract number 609-18/UN7.D2/PP/VIII/2023.
文摘Shallow water infrastructure needs to support increased activity on the shores of Semarang.This study chooses several pontoons because of their good stability,rolling motion,and more expansive space.A coupled simulation method consisting of hydrodynamic and structural calculations has been used to evaluate a catamaran pontoon’s motion and structural integrity.Four different space sizes are set for the pontoon system:5 m,5.5 m,6 m,and 6.5 m.The frequency domain shows that the pontoon space affects the RAO in wave periods ranging from 3 s to 5 s.At wave periods of 3 s,4 s,and 5 s,the pontoon space significantly affects the maximum motion and chain tension parameter values,which are evaluated via time domain simulation.The critical stress of the pontoon is shown at a wave period of 5 s for 5 m and 5.5 m of pontoon space,which shows that the stress can reach 248 MPa.
文摘For the solution of peridynamic equations of motion,a meshless approach is typically used instead of utilizing semi-analytical or mesh-based approaches.In contrast,the literature has limited analytical solutions.This study develops a novel analytical solution for one-dimensional peridynamic models,considering the effect of damping.After demonstrating the details of the analytical solution,various demonstration problems are presented.First,the free vibration of a damped system is considered for under-damped and critically damped conditions.Peridynamic solutions and results from the classical theory are compared against each other,and excellent agreement is observed between the two approaches.Next,forced vibration analyses of undamped and damped conditions are performed.In addition,the effect of horizon size is investigated.It is shown that for smaller horizon sizes,peridynamic results agree well with classical results,whereas results from these two approaches deviate from each other as the horizon size increases.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52201380)Fundamental Research Funds for the Central Universities (Grant No. D5000230080)+2 种基金Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (Grant Nos. CX 2024049 and CX2023006)the Chunhui Program of Ministry of Education of China (Grant No. HZKY20220538)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (Grant No. PF2023057)。
文摘Internal solitary waves(ISWs) are a common phenomenon beneath the ocean surface and represent a significant environmental hazard that must be considered for the safe navigation of submersibles. A numerical simulation model for the interaction of solitary waves with submersibles at a large scale has been developed. The Miyata-ChoiCamassa(MCC) equation serves as the basis for generating ISWs. The impacts of the submergence depth, wave amplitude, and advancing velocity on the motion response and load characteristics of the submersible are examined in detail. This study elucidates the governing laws and mechanisms underlying the impact of ISWs on submersibles.The research findings indicate that shorter distances to the undisturbed surface, higher wave amplitudes, and fasteradvancing speeds result in greater effects on submersibles. For a submersible operating in the lower layer, both the alteration in density near the wave interface and the dynamic pressure induced by ISWs can reduce its lift, potentially resulting in a rapid descent. It is imperative to pay considerable attention to the impact of ISWs, as they have the potential to precipitate a loss of control of the submersible.
基金supported by the National Natural Science Foundation of China(Nos.52201322,52222109,and 52071096)the Guangdong Basic and Applied Basic Research Foundation(Nos.2022B1515020036 and 2023A1515012144)the Natural Science Foundation of Guangzhou City(No.202201010055),China.
文摘Installing annular wave-energy converters(WECs)on the columns of floating wind platforms in the form of a coaxial-cylinder provides a convenient means of integration.Extant coaxial-cylinder-type wind-wave hybrid systems are mostly based on single-column platforms such as spars(single coaxial-cylinder hybrid system'hereafter).Systems based on multiple-column platforms such as semi-submersible platforms('multiple coaxial-cylinder hybrid systems'hereafter)are rarely seen or studied,despite their superiority in wave-power absorption due to the use of multiple WECs as well as in dynamic stability.This paper proposes a novel WindFloat-annular-WEC hybrid system,based on our study investigating its dynamic and power features,and optimizing the geometry and power take-off of the WECs.Our results show that the dynamic and power features of a multiple coaxial-cylinder hybrid system are different from those of a single coaxial-cylinder hybrid system,so the same optimization parameters cannot be directly applied.Flatter annular WECs absorb slightly more power in a wider wave-period range,but their geometry is confined by limitations in installation and structural strength.The overall effect of an oblique incident wave is greater intensity in the motions of the hybrid system in yaw and the direction perpendicular to propagation,although the difference is small and maybe negligible.
基金the support from the National Natural Science Foundation of China (Grant Nos. 52405447 and 52275299)the National Key Research and Development Program of China (Grant No. 2021YFB1716200)the Key Research and Development Program of Jiangxi Province in China (Grant No. 20232BBE50011)。
文摘Atomic-level manufacturing,as the "keystone" of future technology,marks the transformative shift from the micro/nano era based on "classical theory" to the atomic era grounded in "quantum theory".It enables the precise control of matter arrangement and composition at the atomic scale,thereby achieving large-scale production of atomically precise and structured products.Electrochemical deposition(ECD),a typical "atom addition" fabrication method for electrochemical atomic and close-to-atomic scale manufacturing(EC-ACSM),enables precise control over material properties at the atomic scale,allowing breakthroughs in revolutionary performance of semiconductors,quantum computing,new materials,nanomedicine,etc.This review explores the fundamentals of EC-ACSM,particularly at the electrode/electrolyte interface,and investigates maskless ECD techniques,highlighting their advantages,limitations,and the role of in situ monitoring and advanced simulations in the process optimization.However,atomic electrochemical deposition faces significant challenges in precise control over atom-ion interactions,electrode-electrolyte interfacial dynamics,and surface defects.In the future,overcoming these obstacles is critical to advancing EC-ACSM and unlocking its full potential in scalability for industrial applications.EC-ACSM can drive the highly customized design of materials and offer strong technological support for the development of future science,ushering in a new atomic era of material innovation and device manufacturing.
基金the National Natural Science Foundation of China(Award No.07120016)support by the Dalian University of Technology(DUT)(Award Nos.82232022,82232043,and DUT22LAB404)AVIC Shenyang Aircraft Company(Award No.12020641 and 12020642)。
文摘Leveraging surface texturing to realize significant friction reduction at contact interfaces has emerged as a preferred technique among tribology experts,boosting tribological energy efficiency and sustainability.This review systematically demonstrates optimization strategies,advanced manufacturing methods,typical applications,and outlooks of technical challenges toward surface texturing for friction reduction.Firstly,the lubricated contact models of microtextures are introduced.Then,we provide a framework of state-of-the-art research on synergistic friction optimization strategies of microtexture structures,surface treatments,liquid lubricants,and external energy fields.A comparative analysis evaluates the strengths and weaknesses of manufacturing techniques commonly employed for microtextured surfaces.The latest research advancements in microtextures in different application scenarios are highlighted.Finally,the challenges and directions of future research on surface texturing technology are briefly addressed.This review aims to elaborate on the worldwide progress in the optimization,manufacturing,and application of microtexture-enabled friction reduction technologies to promote their practical utilizations.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344)National Natural Science Foundation of China(62263014).
文摘1 Introduction Amid escalating global climate change,the“dual carbon”goals of carbon peak and carbon neutrality have become a focal point of global attention and an important strategy for sustainable development[1].With the rapid development of renewable energy technologies and the increasing public demand for environmental protection and low-carbon living,the adoption of new energy vehicles,particularly electric vehicles(EVs).
基金support of the European Commission by way of the Marie Sklodowska-Curie Innovative Training Networks(ITN-ETN)project TERRE Training engineers and researchers to rethink geotechnical engineering for a low carbon future'(H2020-MSCA-ITN-2015-675762)the Engineering and Physical Sciences Research Council(EPSRC,EP/N035526/1)The contribution of El Mountassir to this work was also supported by a UKRI Future Leaders Fellowship(MR/V025376/1).
文摘Pleurotus ostreatus,a saprotrophic fungus,has been proposed for the remediation of organic contaminants in soils and more recently for modifying the hydraulic and mechanical behaviour of granular soils.The in situ perfor-mance of fungal-based biotechnologies will be controlled by the fungal growth and associated biochemical activity that can be achieved in soil.In this study,the influence of environmental conditions(temperature,degree of saturation),substrate type(lignocellulose and spent coffee grounds)and concentration on the my-celium growth of P.ostreatus in sand are investigated.Furthermore,the evolution of growth/survival indicators(respiration,ergosterol concentration)and enzymatic activity(laccase,manganese peroxidase)are investigated.Temperature was shown to have a strong influence on the growth of P.ostreatus in sand:growth was observed to be delayed at low temperatures(e.g.5℃),whereas growth was prevented at high temperatures(e.g.35℃).No growth was observed at very low degrees of saturation(S,=0%and 1.2%),indicating there is a critical water content required to support P.ostreatus growth.Within the mid-range of water contents tested radially,growth of P.ostreatus was similar.However,growth under saturated soil conditions was restricted to the air-water at-mosphere due to the requirement for oxygen availability.Low substrate concentrations(1%-5%)resulted in high radial growth of P.ostreatus,whereas increasing substrate content further acted to reduce radial growth,but visual observations indicated that fungal biomass density increased.These results are important for under-standing the feasibility of P.ostreatus growth under specific site conditions and for the design of successful treatment strategies.