期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Piezoresistivity in Carbon Fiber Reinforced Cement Based Composites 被引量:5
1
作者 BingCHEN KeruWU WuYAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期746-750,共5页
The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to asse... The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity. 展开更多
关键词 Carbon fiber Cement-based composites PIEZORESISTIVITY
在线阅读 下载PDF
Effect of Superfine Slag Powder on HPC Properties
2
作者 WuYAO JieLI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第1期87-90,共4页
A superfine slag powder (SP) made from granulated blast furnace slag incorporating activators by using special millingtechnique, was used as supplementary cementitious material in high performance concrete (HPC), repl... A superfine slag powder (SP) made from granulated blast furnace slag incorporating activators by using special millingtechnique, was used as supplementary cementitious material in high performance concrete (HPC), replacing part ofthe mass of normal Portland cement. The effects of the SP on the workability, mechanical and crack self-healingproperties of HPC were studied. The hydration process and microstructure characteristics were investigated by X-raydiffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The crack self-healing capacitywas evaluated by Brazilian test. The test results indicate that the SP has especially supplementary effect on waterreducing and excellent property of better control of slump loss. The concrete flowability increases remarkably withthe increase of SP replacement level in the range of 20% to 50%. The compressive and splitting tensile strengthsof HPC containing SP are higher than the corresponding strength of the control concrete at all ages. The crackself-healing ability is highly dependent on SP content of HPC. 展开更多
关键词 Superfine slag powder High performance SELF-HEALING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部